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Preface

This book “Computing Science in Ancient India” is an outgrowth from
the talks presented at the “Louisiana Symposium on Ancient Indian
Sciences” (LSAIS) in Lafayette, Louisiana on October 25, 1997. That
symposium was sponsored jointly by the University of Southwestern
Louisiana (USL), Acadian Indian Association (AIA), and the World
Association for Vedic Sciences (WAVES). Participants from the U.S. and
India took part in that conference. It was decided that a source book of
early Indian contributions to computing science be put together.

The material in the book must be taken as an introduction to the Indian
contributions to the science of computing. We have taken contributions
from different time periods, ranging from the Vedic to the medieval. Apart
from chapters that deal with computing lechniqucs we also include material
on logy, and cognitive science that tell us something
about the problem areas where the computing science notions were applied.
It is hoped that these chapters will provide a flavor of Indian science so that
the interested reader can learn about other topics by examining papers that
are referenced at the end of the chapters.

The book starts with an overview of Indian science (Kak). The next
three chapters deal with the description of binary numbers (van Nooten),
the Katapayadi notation and its equivalence to hashing that is used in
computer systems (Raman), and the Panini-Backus form to describe a high-
level computer language based on the ideas of the great grammarian Panini
(Rao).

The next two chapters (Staal) describe some technical aspects of
Panini’s grammar and Indian logic. Note that the Paninian structure (600
B.C.E.?) has been shown to be equivalent to the Turing machine and the
rise of mathematical logic in India took place centuries before its
rediscovery in Europe!

The next chapter (Frawley) shows how one needs ingenuity in
decoding Indian texts. It is shown that Indian myths represent information
regarding the motions of the planets. The last two chapters (Kak) deal with
cosmology and cognitive science.
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Introduction

Subhash Kak
Department of Electrical & Computer Engineering
Louisiana State University
Baton Rouge, Louisiana

Computer science is entering a new threshold where insights from
biology, psychology, and physics are being harnessed to understand how
nature performs some computations better than any machine. As we
prepare for the future, it is also meaningful to look back into the beginnings
of this science. This is what takes us to India.

Historical research of the past two or three decades has shown that the
key ideas of computer science arose in India. Everyone knows that the sign
for zero was invented in India about two thousand years ago (e.g. Ifrah
1985). It is much less known that important concepts like that of recursion,
algebraic transformation, mathematical logic, abstract language description,
binary numbers, combinatorics also arose in India several centuries before
their rediscovery in the West.

The Indian culture area provides us extensive material, across a very
broad time-span, to help us understand the earliest history of ideas. The
ancient Indian texts are layered in such a fashion that we can see the
gradual of it physical, 1 isti and
psychological ideas (e.g. Feuerstein et al 1995; Seidenberg 1978; Staal
1988). We find that the ancient Indians were greatly interested in
computing methods in geometry, astronomy, grammar., music and other
fields. They were also interested in cognitive science where they were so
advanced that their insights may yet be useful to modern science.

The understanding of the chronological framework of the Indian
civilization has changed greatly in the last few years due to revolutionary
discoveries in art and archaeology.

Art

The earliest Indic art (Figure 1) is preserved on rocks in the paleolithic,
mesolithic and neolithic stages (40,000 B.C.E. onwards) and the seals and
the sculpture of the Indus-Sarasvati phase which lasted from about 8000
B.CE. to 1990 B.CEE. According to Wakankar, the beginnings of the rock
art have been traced to 40,000 years BP (before present) in the decorated
ostrich eggshells from Rajasthan, dated using radiocarbon techniques.
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Figure 1. Evolution ou{dian rock art according to Wakankar (1992)
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Figure 2. Rock art sites in India
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Subsequent phases have been determined using evolution of style and
other radiocarbon dates. The mesolithic period has been dated as 12,000 to
6000 BP. A distribution of the sites of the rock art is given in Figure 2.

The earliest drawings of Figure | are characterized by dynamic action,
vitality in form, and an acute insight into abstraction and visual perception,

It has been found that there is significant continuity of motif in the rock
art and the later Ind i civilization indicating an unb link
with the paleolithic and the mesolithic cultures of India.

Figure 3 shows tessellations from the ancient rock art of India. G.S.
Tyagi (1992) has argued that these designs occur at the lowest stratum of
the rock paintings and if that is accepted they belong to the upper

paleolithic period. These designs are unique to India in the
Tyagi has that they may

ancient world.
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Figure 3. Tessellations in ancient Indian rock art

The basic feature of these tessellations is infinite repetition. This
repetition may occur for a basic pattern or, more abstractly, the lines extend
spatially in a manner so that a basic pattern is repeated in two directions.
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An understanding of this abstract concept must have been a part of the
thought system of the artists. This is another continuity with the central
place of the notion of infinite in later Indian thought.

The abstract and the iconic elements in Indian rock art are different
from the more istic ancient )pean cave paintil There is also
difference in the nature of the community and the state in the Western and
the Indian civilizations in the earliest urban phase. The West has
monumental temples, tombs, palaces whereas the society in India appears to
have been governed by a sacred order.

Literature
One aspect of the Indian literary tradition, which is at least four
thousand years old, is its imaginati The epic Mahabh i

embryo transplantation, multiple births from the same fetus, battle with
extra-terrestrials who are wearing air-tight suits, and weapons of mass-

i The R ions air travel. The Bhagavata Purana, a
medieval encyclopaedic text, has episodes related to different passage of
time for different observers which is very similar to what happens in the
theory of relativity.

The notion of self in the Upanishads embodies a very subtle
understanding of observers and of reality.  Yoga Vasishtha and
Trip sya present a deep di ion of the nature of i

Puranic cosmology gives an age of the universe that is in close
agreement with the modern value. We find examples of accurate
astronomical numbers in the early texts. Perhaps, this accuracy was due to
the knowledge of biological cycles that reflect astronomical processes, such
as menses according to the period of the moon. The understanding of the
outer was helped along by an understanding of the inner.

Are these examples similar to the science fiction imagination of our
own times? There is no evidence of a material science that could have
spawned such imagination. The Indian texts are either full of the most
astonishingly lucky guesses or we have not yet understood their knowledge
framework.

Science

Our understanding of Indian science has improved greatly in the last
twenty years. In the Vedic times itself the notions of rule and metarule
emerged. Subsequently, not only the sign for zero, but also the binary
number system, algebraic transformation, recursion, hashing, mathematical
logic, formal grammars and high level language description arose first in
Indm_. These ideas helped foster a keen study of astronomy, medicine,
physics, psychology, linguistics, and the nature of mind.
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An Overview of Ancient Indian Science

Subhash Kak
Department of Electrical & Computer Engineering
Louisiana State University
Baton Rouge, Louisiana

The Indian tradition looks at its own heritage as the “way of science.”
The earliest part of its remembrance is lauded as the “Veda,” a word which
means knowledge Some scholars have looked at this claim with suspicion,

that this ledg to no more than metaphysical
speculations. But new fmdmgs in archaeology, astronomy, history of
science and Vedic scholarship have shown that the traditional view is
substantially correct. We now know that Vedic knowledge embraced

physics, , logic, ition and other
We find that Vedic science is the earllesl sclence that has come down to
mankind. This has signi in our und ing of

the history of ideas and the evolution of early civilizations.

The reconstructions of our earliest science are based not only on the
Vedas but also on their appendicies called the Vedangas. The six Vedangas
deal with: kalpa, performance ofritual with its basis of geometry,
mathematics and calendrics; shiksha, phonetics; chhandas, metrical
structures; nirukta, etymology; vyakarana, grammar; and jyotisha,
astronomy and other cyclical phenomena. Then there are naturalistic
descriptions in the various Vedic books that tell us a lot about scientific
ideas of those times.

Briefly, the Vedic texts present a tripartite and recursive world view.
The universe is viewed as three regions of earth, space, and sky with the
corresponding entities of Agni, Indra, and Vishve Devah (all gods).
Counting separately the joining regions leads to a total of five categories
where, as we see in Figure 1, water separates earth and fire, and
air separates fire and ether.

In Vedic ritual the three regions are assigned different fire altars.
Furthermore, the five categories are represented in terms of altars of five
layers. The great altars were built of athousand bricks to a variety of
dimensions which coded astronomical knowledge (Kak 1994a; 1995a,b).
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Figure 1. From the tripartite model to five categories of analysis.

In the Vedic world view, the processes in the sky, on earth, and within
the mind are taken to be connected. The Vedic rishis were aware that all
descnpuuns of the umverse lead to logical paradox. The one category

all was lermed brahman. U the
nature of i was of in this view but this
did not mean that other sciences were ignored. Vedic ritual was a symbolic
retelling of this world view.

Chronology

To place Vedic science in context it is necessary to have a proper
understanding of the chronology of the Vedic literature. There are
astronomical references in the Vedas which recall events in the third or the
fourth millennium BCE and earlier. The recent discovery (e.g. Feuerstein
1995) that Sarasvati, the preeminent river of the Rigvedic times, went
dry around 1900 BCE due to tectonic upheavals implies that the Rigveda is
to be dated priorto this epoch, perhaps prior to 2000 BCE, since the
literature that immediately followed the Rigveda does not speak of any
geological catastrophe. But we cannot be very precise about our estimates.
There exist traditional accounts in the Puranas that assign greater antiquity
to the Rigveda: for example, the Kaliyuga tradition speaks of 3100 BCE
and the V ihira tradition ions 2400 BCE. A ding to Henri-
Paul Francfort (1992) of the Indo-French team that surveyed this area, the
Sarasvati river had ceased to be a perennial river by the third millennium
BCE; this supports those who argue for the older dates. But in the absence
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of conclusive evidence, it is prudent to take the most conservative of
these dates, namely 2000 BCE as the latest period to be associated with the
Rigveda.

The textbook accounts of the past century or so were based on the now
disproven supposition that the Rigveda is to be dated to about 1500-1000
BCE and, therefore, the question of the dates assigned to the Brahmanas,
Sutras and other literature remains open. The detailed chronology of the
literature that followed Rigveda has not yet been worked out. A chronology
of this literature was attempted based solely on the internal astronomical
evidence in the important book Ancient Indian Chronology by the historian
of science P.C. Sengupta in 1947. Although Sengupta’s dates have the
virtue of inner consistency, they have neither been examined carefully by
other scholars nor checked against archaeological evidence.

This means that we can only speak in the most generalities regarding
the chronology of the texts: assign Rigveda to the third millennium BCE
and earlier and the Brah to the second mi! i This also implies
that the archaeological finds of the Indus-Sarasvati period, which are coeval
with Rigveda literature, can be used to cross-check textual evidence.

Note also that archaeological discoveries have established that the
Indian tradition can be traced back to at least 8000 BCE. The much old
rock art tradition goes back to 40,000 BCE. Furthermore, there is no
evidence of any break in the skeletal record during the period 4500-800
BCE or any eastward invasions of people before 1900 BCE. According to
Kennedy (1995), “There is no evidence of demographic disruptions in the
north-western sector of the subcontinent during and immediately after the
decline of the Harappan culture.”  Shaffer and Lichtenstein (1995),
speaking of the migrations caused by the drying up of the Sarasvati river,
say, “This shift by Harappan and, perhaps, other Indus Valley cultural
mosaic groups, is the only archaeologically documented west-to-
east movement of human populations in South Asia before the first half of
the first millennium B.C.” This, together with a host of other evidence,
compels the view that the archaeological record and the Vedic literary texts
refer to the same reality. Figure 2, adapted from Lal (1997), shows the
picture in India during the fourth and the third millennia BCE.

No comprehensive studies of ancient Indian science exist. The
textbook accounts like the one to be found in Basham'’s The Wonder that
was India are hopelessly out of date. But there are some excellent surveys
of selected material. The task of putting it all together intoa
comprehensive whole will be a major task for historians of science.

This essay presents an assortment of topics from Indian science. We
review mathematics, astronomy, grammar, logic and medicine.
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Figure 2

Vedic Cognitive Science

The Rigveda speaks of cosmic order. It is assumed that there exist
equivalencies of various kinds between the outer and the inner worlds. It is
these connections that make it possible for our minds to comprehend the
universe. It is noteworthy that the analytical methods are used both in the
examination of the outer world as well as the inner world. This allowed the
Vedic rishis to place in sharp focus paradoxical aspects of analytical
knowledge.  Such paradoxes have become only too familiar to the
contemporary scientist in all branches of inquiry.

In the Vedic view, the complementary nature of the mind and the outer
world, is of igni Ki ge is i in two
ways: the lower or dual; and the higher or unified. What this means is that
knowledge is superficially dual and paradoxical but at a deeper level it has a
unity. The Vedic view claims that the material and the conscious are
aspects of the same transcendental reality.

The idea of complementarity was at the basis of the systematization of
Indian philosophic traditions as well, so that complementary approaches
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were paired together. We have the groups of: logic (nyaya) and physics
(vaisheshika), cosmology (sankhya) and psychology (yoga), and language
(mimamsa) and reality (vedanta). Although these philosophical
schools were formalized in the post-Vedic age, we find an echo of these
ideas in the Vedic texts.

In the Rigveda there is reference to the yoking of the horses to the
chariot of Indra, Ashvins, or Agni; and we are told elsewhere that these
gods represent the essential mind. The same metaphor of the chariot for a
person is in Katha Upanishad and the Bhagavad Gita; this
chariot is pulled in different directions by the horses, representing senses,
which are yoked to it. The mind is the driver who holds the reins to these
horses; but next to the mind sits the true observer, the self, who represents a
universal unity. Without this self no coherent behaviour is possible. In the
Taittiriya Upanishad, the indivi is in terms of five different
sheaths or levels that enclose the individual's self.

The sankhya and the yoga systems take the mind as consisting of five
components: manas, ahankara, chitta, buddhi, and atman. Manas is the
lower mind which collects sense impressions. Its perceptions shift from
moment to moment. This sensory-motor mind obtains its inputs from the
senses of hearing, touch, sight, taste, and smell. Each of these senses
may be taken to be governed by a separate agent. Ahankara is the sense of
I-ness that i some i to a subjective and personal
experience. Once sensory impressions have been related to I-ness by
ahankara, their evaluation and resulting decisions are arrived at by buddhi,
the intellect. Manas, ahankara, and buddhi are collectively called the
internal instruments of the mind.

Chitta is the memory bank of the mind. These memories constitute the
foundation on which the rest of the mind operates. But chitta is not merely
a passive instrument. The organization of the new impressions throws up
instinctual or primitive urges which creates different emotional states.

This mental complex surrounds the innermost aspect of consciousness
which is called arman, the self, brahman, or jiva. Atman is considered to
be beyond a finite enumeration of categories.

Mathematical and Physical Sciences

Geometry and Mathematics

Seidenberg, by examining the evidence in the Shatapatha Brahmana,
showed that Indian geometry predates Greek geometry by centuries.
Seidenberg (1962) argues that the birth of geometry and mathematics had a
ritual origin. For example, the earth was represented by a circular altar and
the heavens were represented by a square altar and the ritual consisted of
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converting the circle into a square of an identical area. There we see the
beginnings of geometry!

Seidenberg considered two aspects of the “Pythagoras” theorem in the
Vedic literature. One aspect is purely algebraic that presents numbers a, b,
¢ for which @’ + b7 = ¢’. The second is the geometric, according to which
the sum of the areas of two square areas of different size is equal to another
square. Seidenberg argued that the Babylonians knew the algebraic aspect
of this theorem as early as 1700 BCE, but they did not seem to know
the geometric aspect. The Shatapatha Brahmana, which precedes the age
of Pythagoras, knows both aspects. Therefore, the Indians could not have
learnt it from the Old-Babylonians or the Greeks, who claim to have
rediscovered the result only with Pythagoras.

In his paper on the origin of mathematics, Seidenberg (1978)
concluded: “Old-Babylonia [1700 BC] got the theorem of Pythagoras from
India or that both Old-Babylonia and India got it from a third source. Now
the Sanskrit scholars do not give me a date so far back as 1700 B.C.
Therefore I postulate a pre-Old-Babylonian (i.c., pre-1700 B.C.) source of
the kind of geometric rituals we see preserved in the Sulvasutras, or at least
for the mathematics involvedin these rituals.” That was before

logical finds disp the earlier ion of a break in Indian
civili: n in the second millennium BCE; it was this assumption of the
Sanskritists that led Seidenberg to postulate a third earlier source. Now
with our new ge, Seil g's lusion of India being the source
of the geometric and mathematical knowledge of the ancient world fits in
with the new chronology of the texts.

Astronomy

Using hitherto neglected texts related to ritual and the Vedic indices, an
astronomy of the third millennium BCE has been discovered (Kak 1994a;
1995a,b). Here the altars symbolized different parts of the year. In one
ritual, pebbles were placed around the altars for the earth, the atmosphere,
and the sky. The number of these pebbles were 21, 78, and 261,
respectively. These numbers add up to the 360 days of the year. There
were other features related to the design of the altars which suggested that
the ritualists were aware that the length of the year was between 365 and
366 days.

The organization of the Vedic books was also according to all
astronomical code. To give just one simple example, the total number of
verses in all the Vedas is 20,358 which equals 261 x 78, a product of the
sky and atmosphere numbers! The Vedic ritual followed the seasons hence
the importance of astronomy.

The second millennium text Vedanga Jyotisha went beyond the earlier
calendrical astronomy to develop a theory for the mean motions of the sun
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and the moon. This marked the beginnings of the application of
mathematics to the motions of the heavenly bodies.

The sun was taken to be midway in the skies. A considerable amount
of Vedic mythology regarding the struggle between the demons and the
gods is a metaphorical retelling of the motions of Venus and Mars (Frawley
1994).

The famous myth of Vishnu's three strides measuring the universe
becomes intelligible when we note that early texts equate Vishnu and
Mercury. The myth appears to celebrate the first measurement of the period
of Mercury (Kak 1996a) since three periods equals the number assigned in
altar ritual to the heavens. Other arguments suggest that the Vedic people
knew the periods of the five classical planets.

Yajnavalkya (1800 BCE ?) knew of a 95-year cycle to harmonize the
motions of the sun and the moon and he also knew that the sun’s circuit was
asymmetric (Kak 1997c).

‘Writing

Cryptological analysis has revealed that the Brahmi script of the
Mauryan times evolved out of the third millennium Sarasvati (Indus) script.
The Sarasvati script was perhaps the first true alphabetic script although it
used a large number of logographic symbols as well. The worship of
Sarasvati as the goddess of learning remembers the development of writing
on the banks of the Sarasvati river. It also appears that the symbol for zero
was derived from the fish sign that stood for “ten” in Brahmi and this
occurred around 50 BCE- 50 CE (Kak 1994b).

Binary Numbers

Barend van Nooten (1993) has shown that binary numbers were known
at the time of Pingala’s Chhandahshastra. Pingala, who lived around the
early first century BCE used binary numbers to classify Vedic meters. The
knowledge of binary numbers indicates a deep understanding of arithmetic.
A binary representation requires the use of only two symbols, rather than
the ten required in the usual decimal representation, and it has now become
the basis of information storage in terms of sequences of Os and 1s in
modern-day computers.

Music

Ernest McClain (1978) has described the tonal basis of early myth.
McClain argues that the connections between music and myth are even
deeper than astronomy and myth. The invariances at the basis of tones
could very well have served as the ideal for the development of the earliest
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astronomy. The tonal invariances of music may have suggested the search
of similar invariances in the heavenly phenomena.

The Samaveda, where the hymns were supposed to be sung, was
compared to the sky. Apparently, this comparison was to emphasize the
musical basis of astronomy. The Vedic hymns are according to a variety of
meters; but what purpose, if any, lay behind a specific choice is unknown.

Grammar

Panini’s grammar (6th century BCE or earlier) provides 4,000 rules
that describe the Sanskritof his day completely. This grammar is
acknowledged to be one of the greatest intellectual achievements of all
time. The great variety of language mirrors, in many ways, the
complexity of nature. It is remarkable that Panini set out to describe the
entire grammar in terms of a finite number of rules. Frits Staal (1988) has
shown that the grammar of Panini represents a universal grammatical and
computing system.  From this perspective it anticipates the logical
framework of modern computers (Kak 1987). One may speak of a Panini
machine as a model for the most powerful computing system.

Medicine

Indian medicine builds upon the tripartite Vedic approach to the world.
It is noteworthy that there is a close parallel between Indian and Greek
medicine. For example, the idea of breath (prana in Sanskrit, and pneuma
in Greek) is central to both. Jean Filliozat (1970) has argued that the idea
of the correct association between the three elements of the wind, the gall,
and the phlegm, which was described first by Plato in Greek medicine,
appears to be derived from the earlier rridosha theory of Ayurveda.
Filliozat suggests that the transmission occurred via the Persian empire.

Rhythms of Life

The moon is called the “lord of speech” in the Rigveda. Other many
references suggest that in the Rigvedic times the moon was taken to be
connected with the mind. This is stated most directly in the famous
Purushasukta, the Cosmic Man hymn, of the Rigveda where it is stated that
the mind is born of the moon. It appears that the relationships between
the astronomical and the terrestrial were also taken in terms of periodicities
and so there was knowledge of biological cycles (Kak 1996b, 1997).

What are the seats of these cycles? According to tantra the chakras of
the body are the centers of the different elements as well as cognitive
capacities and rhythms related to “internal planets.” The knowledge of
these rhythms appears to have led to astrology.
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Cosmology

‘We have seen how the logical apparatus that was brought to bear on the
outer world was applied to the analysis of the mind. But the question
remains: How does inanimate matter come to have awareness? This

ical question was by ing entities for smell, taste,
form. touch, and sound as in Figure 1. In the Sankhya system, a total
of twenty-four such categories are assumed. These categories are supposed
to emerge at theend of a long chain of evolution and they may be
considered to be material. The breath of life into the instruments of sight,
touch, hearing and so on is provided by the twenty-fifth category, which is
purusha, the soul. The tanmatra of Sankhya is the potentiality that leads to
matter or cognitive centers. In this conception it is somewhat like a
quantum potential.

The recursive Vedic world-view requires that the universe itself go
through cycles of creation and deslrucuon This view became a part of the

k and ly very long: cycles of billions of
years were assumed. The Sankhya evolution takes the life forms to evolve
into an increasingly complex system until the end of the cycle.

The categories of Sankhya operate at the level of the individual as well.
Life mirrors the entire creation cycle and cognition mirrors a life-history.
Surprisingly similar are the modern slogan: ontogeny is phylogeny, and
microgeny (the cognitive process) is a speeded-up ontogeny (Brown 1994).
The Vaisheshika system describes an atomic world.

Science After Aryabhata

In the earliest period of Indian science, it is exceptional when we know
the authorship of a text or an idea. For example, although Yajnavalkya and
Lagadha describe considerable astronomy, we do not know if this was
developed by them or they merely summarized what was then well known.
Likewise we are not sure of the individual contributions in the Shulba
Sutras— of Baudh and other auth which describe
geometry, or in Pingala’s Chhandahsutra which shows how to count in a
binary manner. The major exception to the anonymous nature of early
Indian science is the grammatical tradition starting with Panini. This
tradition is an application of the scientific method where the infinite variety
of linguistic data is generated by means of a limited number of rules.

With Aryabhata, we enter a new phase in which it becomes easier to
trace the authorship of specific ideas. But even here there remain other
aspects which are not so well understood. For example, the evolution of
Indian medicine is not as well documented as that of Indian mathematics.
Neither do we understand well the manner in which the philosophical
basis underlying Indian science evolved.
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Thus many texts speak of the relativity of time and space—abstract
concepts that developed in the scientific context just a hundred years ago.
The Puranas speak of countless universes, time flowing at different rates
for different observers and so on.

The Mahabharata speaks of an embryo being divided into one hundred
parts each becoming, after maturation in a separate pot, a healthy baby; this
is how the Kaurava brothers are born. There is also mention of an embryo,
conceived in one womb, being transferred to the womb of another woman
from where it is born; the transferred embryo is Balarama and this is how
he is a brother to Krishna although he was born to Rohini and not to
Devaki. There is an ancient mention of space travellers wearing airtight
suits in the epic Mahabharata which may be classified as an early form of
science fiction.

Universes defined recursively are described in the famous episode of
Indra and the ants in Brahmavaivarta Purana. Here Vishnu, in the guise of
a boy, explains to Indra that the ants he sees walking on the ground have all
been Indras in their own solar systems in different times! These flights of
imagination are to be traced to more than a straightforward generalization
of the motions of the planets i mm a cychc universe. They must be viewed
in the of an tradition of cognitive and
analytical thought (see e.g. Su:al 1998}

The context of modern science fiction books is clear: it is the
liberation of the earlier modes of thought by the revolutionary
developments of the 20th century science and technology. But how was
science fiction integrated into the mainstream of Indian literary
tradition two thousand years ago? What was the intellectual ferment in
which such sophisticated ideas arose?

Of the eighteen early siddhantas the summaries of only five are
available now. In additionto these siddhantas, practical manuals,
astronomical tables, description of instruments, and other miscellaneous
writings have also come down to us (Sarma 1985). The Puranas also have
some material on astronomy. Here we just list some of the main names in
astronomy after 450 CE. For background on astronomy, see Billard (1971)
and Selenius (1978); for areview of the contributions to mathematical
logic, see Matilal (1968) and Staal (1988).

Aryabhata (horn 476) is the author of the first of the later siddhantas
called Aryabhatiyam which sketches his mathematical, planetary, and
cosmic theories. This book is divided into four chapters:

(i) the astronomical constants and the sine table

(ii) mathematics required for computations

(iii) division of time and rules for computing the longitudes
of planets using eccentrics and epicycles
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(iv) the armillary sphere, rules relating to problems of
trigonometry and the computation of eclipses.

The parameters of Aryabhatiyam have, as their origin, the
commencement of Kaliyuga on Friday, 18th February, 3102 BCE. He
wrote another book where the epoch is a bit different.

Aryabhata took the earth to spin on its axis; this idea appears to have
been his innovation. He also considered the heavenly motions to go
through a cycle of 4.32 billion years; here he went with an older tradition,
but he introduced a new scheme of subdivisions within this great cycle.

That Aryabhata was aware of the relativity of motion is clear from this
passage in his book, “Just as a man in a boat sees the trees on the bank
move in the opposite direction, so an observer on the equator sees the
stationary stars as moving precisely toward the west.”

Varahamihira

Varahamihira (died 587) lived in Ujjain and he wrote three important
books: Panchasiddhantika, Brihat Samhita, and Brihat Jataka. The first is
a summary of five early astronomical systems including the Surva
Siddhanta. (Incidently, the modern Surya Siddhanta is different in many
details from this ancient one.) Another system described by him, the
Paitamaha Siddhanta, appears to have many similarities with the ancient
Vedanga Jyotisha of Lagadha.

Brihat Samhita is a compilataion of an assortment of topics that
provides interesting details of the beliefs of those times. Brihat Jataka is a
book on astrology which appears to be considerably influenced by Greek
astrology.

Brahmagupta

Brah of Bhi in R who was born in 598, wrote
his iece, Brah huta Siddh in 628. His school, which was a
rival to that of Aryabhata, has been very influential in western and northern
India. B ’s work was into Arabic in 771 or 773 at

Baghdad and it became famous in the Arabic world as Sindhind.

One of Brahmagupta’s chief contributions is the solution of a certain
second order indeterminate equation which is of great significance in
number theory.

Another of his books, the Khandakhadyaka, remained a popular
dbook for ions for i
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Bhaskara
Bhaskara (born 1114), who was from the Karnataka region, was an
g i and . Amongst his mathematical
contributions is the concept of differentials. He was the author of
Siddhanta Shiromani, a book in four parts:

@) Lilavati on arithmetic

(ii) Bijaganita on algebra

(iii) Ganitadhyaya

(iv) Goladhyaya on astronomy

His epicyclic-eccentric theories of planetary motions are more developed
than in the earlier siddhantas.

to we see a ishing tradition of
and astronomy in Kerala which saw itself as a successor to the school of
Aryabhata. We know of the contributions of very many scholars in this
tradition, of whom we will speak only of two below.

Madhava

Madhava (c. 1340-1425) to d ine the
positions of the moon every 36 mmu!cs He also provided methods to
estimate the motions of the planets. He gave power series expansions for
trigonometric functions, and for pi correct to eleven decimal places.

Nilakantha Somayaji

Nilakantha (c. 1444-1545) was a very prolific scholar who wrote
several works on astronomy. It appears that Nilakantha found the correct
formulation for the equation of the center of the planets and his model must
be considered a true heliocentric model of the solar system. He also
improved upon the power series techniques of Madhava.

The methods developed by the Kerala mathematicians were far ahead
of the European mathematics of the day.

Concluding Remarks

This brief overview is not systematic. Our objective was merely to
highlight a few areas that show the need for a radical rewriting of the
history of science in India. During the last couple of decades,
overwhelming evidence has that shows ics and
astronomy arose in India at least a thousand years sooner than had been
earlier supposed. The cognitive tradmon in India led to advanced theories

of mind and the d of and ing systems. There
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are aspects of the Indian approach to consciousness which may yet be of
value to contemporary science.
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Binary Numbers In Indian Antiquity*

B. van Nooten
Department of South & Southeast Asian Studies
University of California
Berkeley, California

Preliminary

Binary numbers have in recent time become indispensible for the
workings of the digital computer since they allow the representation of any
whole number in terms of two markers: “on” (1) and “off” (0). I have
found good reason to believe that the rudiments of binary calculation were
discovered in India well in advance of their discovery by the German
philosopher Gottfried Leibniz in 1695.

Historians of Indian mathematics have for many decades recognized
the contributions of the Indian mathematicians from as early as the time that
the handbooks for constructing Vedic altars were composed (Sth century
B.C. ?). The better known contributions date from the period of the schools
of Ujjain, Kusumapura and Mysore, from the fifth century A.D. until the
eleventh. The discovery of the binary number may have escaped attention
because its formulation is not contained in any of the strictly mathematical
treatises of the Indian tradition.' Instead, Idiscovered it in an entirely
different branch of science, the chandahsastra, or “science of verse
meters.”

The Sanskrit Metrical Tradition

Pingala

The Vedic tradition ascribed a great. almost mystical significance to
the meters of the sacrificial chants. Careful studies were made not only of
the meters of the chant, but also of its language, prosody, proper place and

*Reprinted with kind permission from Kluwer Academic Publishers. Appeared
previously in the Joumnal of Indian Siudies 21:31-50, 1993,

! See, for instance, H.L. Resnikoff and R.O. Wall, Mathematics in Civilization, Dover Publ.
1984 (2nd. Ed.), who correctly credits the Babylonians with inventing the place-value system
of numerals, but is silent about the Indian contributions. The Aryabhatiya, in fact, does have a
chapter on metrics, but it confines itself to the theory of permutations.
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proper time of recitati The hod y developed to study and analyze
meters became a respected field of study from a very early time onward. In
this tradition the earliest comprehensive treatise on Vedic and Sanskrit
meters that has been preserved is the Chandahsastra by Pingala. Though
most of the work is purely descriptive and is devoted to sorting out and
classifying the meters according to their structure, in its eighth chapter
occur a few brief statements that purport to establish a more general theory
for dealing with the classification of meter. These statements, or sitras
treat of the classification of metrical feet in a manner that suggests
that Pingala was aware of the binary number. They have not been the
subject of any special study in the West since the edition and translation of
the Chandahsastra by Albrecht Weber in 1863. They form the subject of
this paper and I hope to show thatin a devious and unexpected manner
Pingala has succeeded in introducing the binary number as a means for
classifying metrical patterns.

Pingala’s Chandahsastra fits into the literary genre of sitras, or series
of aphorismic statements that are memorized and serve as aides-de-
mémoire for a more complete theoretical exposition that is usually supplied

by an expl; y y. The Chandahsastra itself consists of some
310 brief sarras divided over eight books and it treats of the structure and
nomenclature of meters. The main 'y on the Chandahsastra is

Halayudha’s 13th century Mrtasamjivini, From an earlier date (8th century
?) we have Keddra’s Vrutaramnakara, an independent work based on
Pingala, but dealing with non-vedic meters only.

The text-critical i with the Chandahsastra are
similar to those of most ancient Indian literary works. We do not know
who the author Pingala was, we do not know where he lived, when his work
was composed and finally, whether the work going by his name was really
all his, or a product of his school, or a conglomerate of text fragments
assembled at one time and thenceforth transmitted under his name. Part of
the evidence of its date is internal, part external. The text-critical work has
been done almost exclusively by Albrecht Weber.

The main evidence for Pingala's date is external: his treatise is

i by the Sabara on Mir itra 1.1.5 who has
been assigned to the 4th century A.D.* The treatise as we have it now is
probably a composite. However, the passage where the binary system is
developed is to all likelihood part of the original work,’ and not an addition

* ‘Sabara was known to the astronomer Varghamihira whose date we know fairly
accurately. The date of 200 B.C. that Datta and Singh 1935 p.75 assign to Pingala is puzzling.
They do not justify the date, nor quote authorities confirming it.

* Jacobi (1933) is of this opinion (. zweifellos echt” p. 138) pointing out that discussions of
the prastara are found also in the Bharatanatyam X1V (appr. 4th century A.D.) and agreements
can be found with earlier passages in Pingala’s work. The passage preceding it (VIIL2-19) is
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by a later metrist. The internal evidence of the treatise does not militate
against a date before the 2nd century A.D. since the composition of the
sutras follows the pattern of the older unversified sitras, such as those
contained in Panini’s Astadhyayi.* It is not possible, on objective grounds
to decide whether Pingala’s treatise preceded or followed Panini, nor is
it possible to prove that Pingala’s work existed before the third century
AD.

Pingala’s Classification of Meters

A Sanskrit meter consists of verse feet which are composed of syllables
which are prosodically either light (laghu) or heavy (guru). A light syllable
(which I will represent as L), consists of a short vowel followed by at most
one consonant and any other syllable is heavy (=) . A verse meter usually
consists of a set of four quarter verses (padas) with the same number of
syllables each. The majority of Vedic verses have either 8-syllabic, or 11-
syllabic, or 12-syllabic quarter verses. Within each quarter verse the
succession of laghu and guru syllables varies within predictable limits. The
metrist’s task is to discover the parameters within which that variation takes
place, to classify the meters and to organize them into larger categories.

The question may be raised why earlier Sanskritists and
mathematicians have failed to pay attention to the binary theory of

lassi ion that Pingala The main reason is that this theory

was one of two alternative solutions to the problem of the classification of
meters. One solution, which will not be discussed here, is to divide each
meter mechanically into units of three syllables then assign names to the
meters on the basis of the combinations of triplets. This has become the
accepted method of metrical analysis in India and has superseded every
other classificational systems that may have been devised earlier or later.®

But in addition, Pingala experimented with another, less arbitrary and
more universal means for inventorizing the meters, one that is of interest
here. Instead of giving names to the meters he constructs a prastara, a
“bed”, or matrix, in which the laghus and gurus are listed horizontally.
Before I continue with the relevant passages from the Sanskrit texts, three
remarks are in order:

absent from all the Re-recensions of the Pingalasastra, and from many of the Yajus
manuscripts and is. therefore, suspect (Weber 1863 p.414)

* We recognize the use of adhikaras, such as “chandas™ (1.1, the anuvrtis, the use of “sese”
(2.12) 10 include unnamed contexts. the use of the ablative to indicate context-after and the
locative for the context-before. In brief, enough similarities exist to show that the descriptive
techniques used by Pingala and the grammarians were similar.

* The theory of analysis of meter by ganas can be found in Weber /863 and in Appendix A to
Apte 1959, Vol. I1l, after p. 1755.
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a) Most of the metrists regard the value of the first and the last

syllable of a verse line as indifferent to the definition of its meter.

They can always be either short or longand are exempt from

analysis. As aresult, an eight-syllable verse is analyzed as if it had

six syllables only.

The table they aim for starts with the number 1, not zero. This is

of importance in the conversion of the binary number.

c) The Hindu scientific and ari ical for i though precise
and unambiguous, are at times difficult to translate without adding
explanatory phrases.

b)

Therefore, I have also translated remarks from the more explicit
commentaries.

The device of the prastara has to be visualized as an actual table
written on a board, or in the dust on the ground.® Each horizontal line of the
table stands for a line of verse represented as a succession of laghu and
guru syllables. Every possible combination of laghus and gurus is spelled
out for a particular meter. Hence there will be separate prastaras for 8-
syllabic, for 11-syllabic and 12-syllabic meters. The first line in each will
consist of all laghus, the last line of all gurus.

The two questions Pingala sets out to answer are:

a) Is it possible to give a numeric value to each line in a given
prastara so that we could give a unique value to every metrical
quarter verse with a corresponding succession of laghu and guru
syllables?

Suppose we are confronted with a verse meter in a text, how do we
determine what the numeric value of that meter is?

b

Pingala is obviously not looking for an arbitrary numeration, such as
counting the lines in the prastara from top to bottom and assigning
successive numbers. Instead, he produces mathematical formulas which
define the position of the verse meter within the prastara unambiguously.
In the following paragraphs I have given the relevant Sanskrit text followed
by its translation. The reason for being this explicit is that many of these
texts have not been translated and some are rather difficult to locate.
Pingala’s own formulations are very brief.

© One of the names of mathematics in ancient India was “Science of Dust”, since figures and
diagrams were drawn in the sand

COMPUTING SCIENCE IN ANCIENT INDIA 2

Finding the Decimal Equivalent of a Metrical Pattern.
The rule for constructing the prastara is given in ChS. 8.23:"

Sah, pirvaprkta I

“In an order of one additional, the la is united with the previous one.” The
metrist Kedara (8th century A.D.?) expands on this cryptic statement
as follows:

a) pade sarvagurav adyal laghum nyasya guror adhah
b) yathopari tatha sesam bhityah kuryad amum vidhim
¢) #ne dadyad gurin eva yavat sarvalaghur bhavet
d) prastaro 'yam samakhyatas chandovicitivedibhih

a) “In a line consisting entirely of gurus, starting from the
beginning, having placed a laghu underneath a guru,

b) The rest remaining as (in the row) above, again and again one
applies this rule.
¢) One should place the gurus on one (place) less until (the row)

consists entirely of gurus.
d) This has been defined as a prastara ‘matrix’, by the experts
in chandoviciti, ‘metric analysis’.”

The rules for generating the prastara, therefore, involve the
following procedure:

One starts with writing down a row of gurus for as many syllables as
the verse meter requires. For example, a four-syllabic verse will require:

Next a new row of gurus is started, but underneath the first guru in the
row above, alaghu is written instead. The remainder of the row remains
unchanged:

0

On the next row again gurus are written until the first guru of the row
above it is reached. Then a laghu is written. The remainder of the row
remains unchanged:

7 Weber 1863 p. 429; Vrttaramakara 6.2, Bharati 1908 p. 90; Sharma, et al. P. 306
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PO T
Ty

In the next row, again, a laghu is written underneath the first guru an
the rest is copied. .

and so the procedure continues:

)
Uy
vu--
ot T
v-u-
B
vuu-

vuuuv
The last line consists entirely of laghus so that the rule will fail. Then
the prastara is complete.

30, vovuun
. ~vvvva AT —vvvay

16 vuuven 3% uvivue 4B wvuunv

Table 1. The Prastara for six syllables.
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Table 1 shows the complete prastara for an eight-syllabic verse. As
usual, its first and last syllables are ignored. Kedara continues:

Sab)uddistam dvigunan ankan upary adyat samalikhet

Scd)laghusthane tu ye rikah syus taih saikair misritair bhavet

5ab)*(Starting) from the beginning one should write numerals doubled
above (the verse feet),

Scd)However, the numerals which would be above a short foot by
those bi together and by one the
(number of the meter) would be indicated.”

We find a fuller expl ion of this in a sub y, the
Tatparyatika of the commentator Trivikrama (12th century):*

“tatra yam udaharanapradarsanaya lapah: U U - U - U U - ; idam
vyaktisvarupam anustubhi jatau kathitam bhavati ‘ty ukte idam
idrsam eva ksitau praviralam dhriyate. tasmad upari dvigunan ‘advad
upary ankan samalikhet’ iti vacanat pratyaksaram kramena ekasmad
arabhya dvigunan ankan samalikhed, yatha:"

“Here is a formula to show an example: U U - U - U U - . If the
Question is raised: ‘What number does this particular pattern in the
anustubh class (of meters) have ?’, this very same (pattern) is retained
separately on the board. Next, because of the statement that one should
write doubled figures above it, one writes numbers as follows, one after
the other, beginning with one, syllable by syllable:

12438163264 128"
VU-U-UuU-

Trivikrama continues:

“tara  ‘nkah taih saikair misritair bhavet iti vacanad etad
vyakiau laghustham ekam dvav astau dvatrimsac catuhsastim ca
samgrhniyat. tatraikam dhruvakaripam ca ksipet. etasmin misrena
Jato rasih 108.”

“Next, since it is stated that the numerals above a laghu in the scheme
have to be combined and augmented by one, we would get: one, two,
eight, thirty-two, sixty-four. Then we should add one to the sum

* Sharma, et al. pp. 306ff.
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obtained. In this (case) through the combination is obtained the value
108.”
1+2+8+32+64=107. Add one: 108
LIRS, B E e DO R

So the rank number of the metrical line in the prastara is 108.

Through this procedure the metrical line is interpreted as a number.
Each syllable is assigned a numerical value based on its position in the
meter. The first syllable has the value 1 and each subsequent syllable has a
positional value twice that of its left nclghbcr In effect, this scheme is
exactly equivalent to a system of notation wherc the positional
values of the digits increase as the powers of 2, from 2°t0 2", which we call
the binary notation. The difference between Pingala’s system and the one
current in the West is that the Indian system placed the higher positional
value to the right of the lower, whereas in the West we find the lowest value
on the right. The laghu in Pingala’s system serves to indicate that the
position in the number is significant, the equivalent of our notation 1. The
guru means that the position is ignored, our 0. The Western representation
of this number wouldbe: 1 1 0101 1.

In this way Pingala has shown that a metrical pattern can be regarded
as a binary number. As a further illustration, let us find the rank number of
an eight-syllabic Vedic gayatrt verse:

tdt savitiir varéniam

whose metrical representation is:

We list the six central syllables in a vertical column (1) and start a
new column (2) where each laghu is given the value 1 and each guru is left
without a numerical value. Column (3) begins with 1 and the subsequent
numbers are the doubled value of the preceding number. Next, in column
(4), the values in column (2) are multiplied with those in column (3):

(1) ) 3) @)
verse numerical binary product
foot value base 2)x(3)
laghu 1 1 1
laghu 1 2 2
guru 4
laghu 1 8 8
guru 16
laghu 1 32 32
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The numbers in column (4) are added up and the total, 43, is the
decimal value of the binary number represented in column (2). To get the
rank number of the metrical pattern in the prastara we add 1 to the total:
43 +1=44.

Next, the converse process, that of determining the binary equivalent of
a decimal number is given.

Finding the Binary Equivalent of a Decimal Number

The process of converting a decimal number to a binary number is
formulated as one of finding the metrical pattern if one knows its (decimal)
rank number and the metrical has been * " (nasta),
y a refe to the short i of a diagram written in the

;andA
Pingala, (Ch.S. 8.24-25)
1 ardhe, saike g

** A laghu in case of a half; in the case of an additional 1, a guru”
Halayudha explaining Pingala states:

1 ardhe

Yyadai vam vijijiaset: gayatryam samavrttam sastham kidrsam, iti tada
tam eva satsankhyavisesam ardhayeta. tasminn ardhikrte laghur eko
laksyate, sa bhimau vinyasyah. idanim avasista trisankhyavisamatvad
ardhayitum na sakyate. tatra kim pratipattavyam ity aha:

saike g
tam pirvalabdhal lakarat param sthapayet. tato  dvisankhya
‘vasisyate. punas tam ardhayeta, tatas cai ‘kalakaram dadyat. tatas
cai ‘kasankhya ‘vasisyate.  tatra tavat sai ‘ke g iti laksanam
ﬁvqrtaniyam yavad vrttaksarani sat piryante. evam sankhyantare ‘pi
yojyam.

“If (the metrist) is concerned to determine which pattern in the six-
syllable gayarri, for instance, is the sixth, provided all are of the same
length, then that numeral six should be halved. When this has been halved,
one obtains one laghu which is written separately on the ground (bhimau).
Now, since the remaining number three, because of its odd-ness cannot be

* Chandahsastra p. 192.
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halved, how should one proceed?” (Quotes:)"A laghu in case of a half; in
the case of an additional 1, a guru.”

“To the odd number he adds a 1 and halves again. In this way he gets a
single guru which he places beside the laghu. The remaining three are
halved again and he gets a guru. To the remaining 1 he adds a 1, gets a
guru, which he places beside the laghu he got earlier. So the number 2
remains. He halves that again and adds another laghu. This continues until
the six-syllable gayatri is full. In the same way one can proceed with any
other number.”

The procedure outlined here involves a series of divisions by 2 of the
rank number of the meter. It speaks for itself: the initial number is halved
and if the quotient is an even number, a laghu is written in a separate table.
If the quotient is an odd number, a guru is written in the same separate
table, one is added to the quotient and the halving continues.

To give an example, if the decimal number one has is 54 and one
wishes to find the metrical pattern that represents it, one proceeds as
follows:

Write: 54 Write:
divide by 2, ->27: laghu
add 1, divide by 2, -> 14: guru

divide by 2, ->7 laghu
add 1, divide by 2, -> 4: guru

divide by 2, ->2 laghu
divide by 2, -> 1 laghu

The last column reads from top to, bottom:

laghu guru laghu guru laghu laghu, or:
U-uU-uu

A glance at the earlier described prastara (Table 1) shows that, indeed,
the metrical pattern we have obtained is no. 54. In this way Pingala solves
the problem of reconstructing a metrical pattern if only the rank number is
known.  The procedure is equivalent to that of finding the binary
representation of a decimal number.

Historical Importance

The importance of Pingala’s discovery is twofold: it implies that he
was aware of a place-value system of numerical notation and it also shows
that he was working with a numerical base other than base 10. In the
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following I propose to d whether Pingala’s discovery
sprang from a known tradition, or whether he was the originator of his
theory.

Pingala’s notation represents two separate historical developments of
numerical systems: that of the place-value system of numeration and that
of the recognition of numerical systems not based on powers of ten. Ifrah"
adduces evidence that four world civilizations have invented a place-value
system: the Babylonians, the Indians, the Chinese with their rod numerals
and entirely independently, the Mayans of the New World." Was India
influenced by the other Old-World cultures?

The Babylonian place value system was sexagesimal, or based on the
number 60. Its influence on India is found in the later astronomical works,
but not in early India. The Chinese discovered a good decimal place value
system during the Han Dynasty (3d century B.C.)." Yet there is no
evidence to show that the Indians knew of this system.

Within India itself evidence for systems of numbering and counting can
come from two sources: one, the counting system of the language itself and
two, the representation of numbers by numerals. We shall now briefly
examine the evidence about the ancient Indian counting system by looking
at the sources: the ancient Indic languages, the older literature and the
inscriptions.

Sanskrit, being an Indo-European language, has inherited a system of
counting in tens. The numbers from 1 through 10 have arbitrary names, but
the i i ically by tens from twenty through
ninety. The word for “ten” in the enumeration of numerals is followed by
expressions for 10 + 1, 10 + 2, etc. The numerals 20, 30, etc. are variations
on a compound <Sati+, or fi+. The hundreds again are based on a new
name, Satam, and so are thousands and one hundred thousand. The
counting system of a language tends to influence the manner in which
numbers are written."" At Pingala’s time the prevailing language was
Sanskrit or one of its derivatives and so people counted in tens.

History in India begins with the Vedic civilization where in the
Taittiriya Samhita of the Black Yajurveda (1000 B.C.) we have the first
written indication of a numeration system based on the 10. Different ways
of counting are presented, not with figures, but with the names of the
numbers:

' Ifrah 1985, chapters 26-27

"' Seidenberg 1986.

" lrah 1985, p. 398

" This comrespondence is not necessary and not always observed, The Jains, for instance, have
a separate numeral for 400, but no special name for it. Conversely, many different terms can
be used to express the values of the first nine numerals of Sanskrit. See Sircar /965 pp. 248-
247
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“thousand... ten thousand, one hundred thousand, ten hundred
thousand, ten million, one hundred million, ten thousand million, one
hundred thousand million, ten hundred thousand million.”

(TS. vii.2.19-20, Keith 1914)

The assumption underlying the decimal notation is that reading from
left to right, within a decimal number each digit represents a value equal to
one-tenth of its left neighbor. This process is first formally defined by the
mathematician Aryabhata I (b. 476 A.D.) who writes that “the value of a
place (of a number) is ten times that of the (preceding) place: (sthanat
sthanam dasgunam syar)."* Later still, in approximately the 7th century
AD., we find this principle repeated in adifferent form in Vyasa's
commentary on Patafijali’s Yogasiitra no. 3.13:  “yathai’ karekha
Satasthane Satam dasasthane dasai ka cai “kasthane” “...just as one and
the same numeral (rekha) in the 100-position is 100, in the 10-position is
ten and is 1 in the 1-position.”* Though these remarks postdate Pingala’s
presumed date, they are not ever contradicted by statements in the literature
that imply that a non-decimal place value system was in use.

The Indian writing system again supports the decimal place value
system. From a few centuries before Pingala’s time we have numerals
contained in the inscriptions of Naneghat on the western scarp of the
Deccan Plateau, north and east of Bombay. They belong to the Brahmi
alphabet which is written from left to right (see Fig. 1). In these numbers
the digit with the highest value is written on the left, and the lowest number
to its right, e.g. 12 is written as 10 2, or O == and 17 as O = ? .** The
numeral is often, but not necessarily, preceded by words spelling out the
number. From the fact that independent symbols existed for “10”, *20",
80", 100", etc. we can infer that the counting system underlying these
numerals was founded on a decimal base. Of course. it is not a pure place-
value system because in such a system there would be no need for
designing separate symbols for 10, 50, 100, etc. None of the numerals
suggest that another system, such as a duodecimal or sexagesimal was in
use. The same is true for all the subsequent numbers of dates in Indian
history. To our knowledge, Pingala was not exposed to a tradition of
marking numerals in a base other than 10.”

' Aryabhatiya Ganita, vs. 2. Shankar 1976.

'S Yogasutra pp. 131-132 and Woods 1913 pp. 215-216.

' See Bhagavanlal Indraji 1876, pp. 404-406

" The location of this inscription on a monument at the head of a mountain pass on a busy
trade route connecting the Arabian Sea to the Indian hinterland area, may well indicate that the
system of notation was similar to a system adopted by traders and merchants. These traders
were likely to have used an abacus for their calculations which may have played a role in
spreading the decimal system. (Bihler Indian Palaeography §35B). The oldest abacus,
or calculating board known to us was invented in China during the Han dynasty (Jfrah op.cit.
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ANCIENT NAGARI NUMERALS from NANEGHAT INSCRIPTIONS.
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Figure 1. Indian Numerals from Pingala’s Time. (Naneghat, ca. 1*
century B.C.)

To summarize the evidence for the state of mathematics in Pingala’s
time, we can be reasonably certain that his counting system was predicated
on a base of ten, but there is no proof that the place-value system of
notation was used. Pingala’s Chandahsastra itself does not provide us with
representations of numerals. The manuscripts of the commentaries do write

Ppp-118-119), or between 206 B.C. and A.D. 221. In the latter period of this dynasty Buddhist
monks began to ravel from China to India, 50 that the presence of an abacus in Naneghat at
that time should not surprise us. However, there is no clear proof of the use of an abacus in
India from this early a period.
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them, but these postdate the invention of the zero. Although the word for
“zero” (sanya) does occur in the Chandahsastra, it is always spelled out
and not represented by a symbol.

It remains for us to determine in how far the procedures that Pingala
prescribed for converting a verse meter into a decimal number, and vice
versa, are equivalent to those required to convert a binary number into a
decimal number. A system of notation that simply uses “Off” and “On", or
“+" and “-" as markers of a place value does not necessarily produce a
binary system. In fact, you have no more than people who count up to two
have. Butif we have a system that uses two symbols, “+" and “~" in such a
way that every string of “+™'s and “~""s has a unique decimal equivalent
and we are shown how to derive this decimal equivalent and also how to
convert any decimal number into a string of “+™'s and “~""s with a unique
numerical value, then indeed we do have a binary system. Pingala has done
at least this much and as I will show next, his representation of numbers as
members of a prastara bears close comparison with the method Leibniz
followed in his discovery of the binary number.

Europe and India

The discovery of the binary notation of numbers in Europe was the
work of the German philosopher Gottfried Leibniz (1646-1716) at the end
of the 17th century.” In a letter which spells out the first description of his
discovery, he writes:

“..ich sehe, dass s;’ch aus dieser Schreibart der Zahlen wunderliche
Vorteil ergeben (werden), die hernach auch in der gemeinen Rechnung
zu statten kommen werden...""
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Figure 2. Leibniz’s Diagram of Binary Numbers. (Couturat 1903 p-284)

"" My thanks are o Professor Benson Mates of the Department of Philosophy, Berkeley, for
referring me (o the relevant passages of Leibniz.
" Loosen-Vonessen 1968, p. 23.
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The hastily sketched table (Fig. 2) makes it clear how he derived the
values of binary numbers. He writes 15 rows each beginning with a 1. In
each subsequent row he writes an additional “0” after the “1”. To the right
of the last column of each line he draws a vertical line and to the right of
this line writes a column of numbers 12 4 8, etc. Each of these numbers
corresponds to the binary value represented by the preceding row of “1™s
and “0"’s. This table can be reconciled with the prastara model as follows:
The column of powers of 2 in both diagrams are exactly equivalent, but the
rank numbers given to the metrical patterns are systematically one more
than their binary equivalents. Pingala’s prastara for 6 syllables (Table 1)
ends with the pattern U U U U U U, binary 63, to which the metrist assigns
the number 64. It is one short of Leibniz's 7-digit binary number 1000000,
before 64 in his table. The pattern (- — — — — — V), which would
conform exactly to Leibniz’s 1000000, would be the next entry, # 65
starting a 7-syllable prastara. The difference in numbering is due to the
fact that the rank numbers in a prastara are shifted up one decimal value.

To find an ion for this diff we can that the
metrist may have added the value of 1 to the value of the binary number,
because of practical considerations. He may have been reluctant to assign
the rank number O to the first pattern in a prastara, because it runs counter
to the intuitive method of counting. The metrical prastara obviously had a
very practical purpose, that of classifying meters, and so we should regard
this prastara procedure as the practical application of a more general
mathematical theory of binary numerals, to the science of metrics. Further
evidence in support of this supposition is the fact that in some of
the theoretical expositions the first and last syllables of the meter are not
ignored (see Trivikrama on Kedara 2.238, above p.7). These expositions, in
other words, treat of the metrical pattern of a verse as an abstract unit of
calculation, while the practical metrists leave the first and last syllables out
of consideration. The first and last syllables have no practical value for the
classification of metersand their inclusion would unnecessarily have
increased the number of lines in a prastara.

The most striking difference between Leibniz’s system and Pingala’s is
the order in which the powers of 2 are arranged. In the binary number of
Leibniz's design the low digit is on the right, the high value on the left. It is
the precursor of the Western system of binary notation. In Pingala’s
arrangement (Table 1) the lowest value is on the left. This fundamental
difference is primary evidence of the originality of both discoveries.

Leibniz’s letter referred to above is, indeed, the earliest
published account of his discovery. However, Leibniz's notes from 20
years earlier (1677-78) contain a fragment which shows that already at that
time he was experimenting withthe binary notation which he calls
“Progressio Dyadica”, or “Ch istica bimalis”:
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“...perfectior est characteristica numerorum bimalis
quam decimalis, vel alia quaecunque...”.®

I mention this fragment, for several years later Leibniz became
intrigued with the Chinese hexagram depictions of Fu Hsi (Fohy) in the
Book of Changes (I Ching) which he interpreted as binary numbers (Fig.3).
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Fig. 3 The “Prior to Heaven Hexagram Order,” Hsien-tien tzu-hsu
(D.E. Mungello: 1977, Leibniz and confucianism, the search for
accord. p. 52).

The letter where he expresses this opinion is included in Loosen-Vonessen
1968 pp.126-131. The fragment quoted earlier makes it obvious that he had
discovered the binary number prior to learning of the Chinese text. In fact,
however, the / Ching, unlike Pingala, does not contain evidence for the use
of the binary number. Chinese culture was the great discovery of the
Enlightenment and so Leibniz looked there for expressions of rational
thought and not to India which might have had more to offer. Sanskrit texts
were simply unavailable to scholars of the 17th century. India was the
discovery of the Romantic Period and became, for better or worse,
identified as the land of religion. Since Leibniz could not have known
Pingala’s work we have another instance here of a Western rediscovery of a
mathematical principle, this time one millennium and a half later.

® Couturat 1903, p. 284.
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In summary, I have tried to show that Pingala used a binary notation
to classify metrical verses as early as the second or third century A.D. He
also knew how to convert that binary notation to a decimal notation and
vice versa. We know of no sources from which he could have drawn his
inspiration, so he may well have been the originator of the system. Pingala
leaves no record of further applications of his discovery, but it is of great
interest to realize that for many centuries, down to the present time, in fact,
this knowledge was available to and preserved by Sanskrit students of
metrics. Unlike the case of the great linguistic discoveries of the Indians
which directly influenced and inspired Western linguistics, this discovery of
the theory of binary numbers has so far gone unrecorded in the annals of the
West.*
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The Katapayadi Formula and the
Modern Hashing Technique*

Anand V. Raman
Dep of Computer Sci
Massey Univesity, Palmerston North
New Zealand

The essence of the modern hashing technique in computer science is
the derivation of a number from a nonnumeric key to index into a table
where the record containing the key is stored. In this paper, an interestingly
similar technique used in South Indian musicology in the 18th century is
described, and the question of whether it is an anticipation of the hashing
technique is briefly addressed.

The problem of retrieving a record from a table based upon a given key
has been studied extensively.' In this paper, I describe one particular

pproach to this probl hashi d also an i ing earlier
development very similar to it. It is generally believed that the idea of
hashing was originated by H. P. Luhn, in an internal IBM memorandum in
1953,* and first described in the open literature by Arnold Dumey.’ Butis it
possible that the Katapayadi scheme of deriving numbers from names—in
conjunction with the applications to which it had been put, especially in
classical South Indian i is an early anticipation of the hashing
technique? I will discuss this issue in more detail here.

Hashing

A hash table is a data structure in which it takes, on average, a constant
time to find any given element. This constant time is the time taken to
compute a function, called the hash function, of the element being sought.

*© 1997 [EEE. Reprinted, with permission, from IEEE Annals of the History of
Computing, Vol. 19, pp. 49-52, 1997.

' DG, Severance, “Identifier Search Mechanisms: A Survey and Generalized Model,”
Computing Surveys. vol. 6. no. 3, pp. 175-194, 1974.

* D.E. Knuth, The Art of Computer Programming, Vol. 3: Searching and Sorting. Reading,
Mass.. Addison-Wesley, 1973, pp. 541-542

* AL Dumey, “Indexing for Rapid Random-Access Memory,” Computers and Automation. vol
5,10 12, pp. 6-9, 1956.
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This is in contrast to a binary search tree data structure, for example. in
which the time taken to find an element is, on average, proportional to the
log:N, an array or linked linear list data structure in which the time is
proportional to N, where N is the total number of elements. The following
example illustrates the use of hashing, where the marks of 10 students need
10 be stored in a table. It is a trivial example, but it is sufficient to bring out
the essential principle behind hashing.

Example

Examination marks for 10 students (Aaron, Bean, Chang, Diana,
Emma, Fred, Guru, Hoyle, Ingrid, and James) need to be stored in a table.
We might additionally want to retrieve the mark of a student on demand
and, optionally, modify it. One way of doing this is to store the marks
sequentially in a table of size 10 and perform a sequential search on it each
time we want to retrieve a particular record. This would mean that, on
average, we can expect to scan half the table (five elements) before finding
the desired record. A more efficient storage technique would be to store the
elements in order sorted by name. In this case, we would expect to search
the table log,10 (approximately 3.2) times, on average, for each retrieval,
because at each examination, our search space is effectively halved, as the
clement we want is either current, in the upper half or lower half, depending
on whether it is equal to, less than, or greater than the current element.

In contrast to these techniques, the hashing scheme derives a unique
number corresponding to each name, which gives us the cell address of the
element in the table. If we used a hash function H(x) = (ascii(x[0]) = 5) %
10 + 1, where x is the name or value being hashed, x[0] is the first letter of
that name, asciiO is a function that returns the ASCII value of a given letter,
and % stands for the modulus or remainder operator, then the arrangement
of elements in Table 1 would be seen.

Table 1. Hash Function for 10 Names

AdaronFasin e ORI S [S= S [aomlompess o
| Name | Adrian | Bean | Chang %Dmnz IEmm %Fred IGum {Hu le %Ingndj)nmﬂ {

[Mark T I I

To retrieve an element, we would not have to scan any part of the table,
but could go directly to the record’s location by computing its hash value.
For example, if Emma wants to know what her mark was, since ascii(“E”) =
69, we compute (69 — 5) % 10, which gives four, the location of Emma's
record in Table 1.
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Of course, there are other important considerations, such as the number
of elements that can be stored at any given table location (called a bucket)
and how to accommodate overflows and handle collisions (two or more
elements with the same hash value). It has been pointed out to me by a
reviewer of this paper that such considerations are as important as the
derivation of the index. But, it can be argued that these are secondary in
nature, given the motivation of the hashing technique. Its essence can be
said to be the derivation of a number from a given key, which is then
subsequently used to index into an array where the element is stored with
the purpose of eliminating a scan of any part of the array.

The Katapayadi Scheme

In classical India, letters of the Sanskrit alphabet were initially used to
represent numbers. The grammarian Panini (fourth or fifth century BC),
who is believed to have written the first generative grammar for a natural
language,* assigned the values one through nine and zero to the Sanskrit
vowels a, i, u, etc. For example, Sutra (rule) v.i.30 of his grammar,
Ashtadhyayi, is marked with the letter i, which indicates that the rule
applies to the next two rules.® It is also known that various synonyms for
the number words existed. In one system, words with meanings evocative
of the numbers they represented were used. For example, the words indu
(moon) and dhara (earth) stood for the number one, since there was only
one of each, netra (eyes) and paksha (wings) stood for two, and so on. A
more ive list of such can be found in the work by
Ifrah.* who also gives the following instance of its use by Bhaskara I, who
in 629 AD wrote the number 4,320,000 as

or
sk pace/void/primordial coupl /Veda= 0000234,

The Katapayadi scheme was initially just another such system of
expressing numbers through the use of letters (Sanskrit consonants in this
case), with more than one synonym for each number. The consonants
themselves were unevocative of the values they represented, unlike the
earlier scheme, but they now possessed the powerful ability to form easily
memorizable words through the insertion of vowels between them.
Meaningful and mnemonic words could now be formed using these letters
in much the same way as mnemonic words are coined today to represent

“ RE. Asher, The Encyclopaedia of Language and Linguistics, vol. 6. Oxford, England:
Permagon Press, 1994, pp. 2.916-2,918.

* B. Datta and A.N. Singh, History of Hindu Mathematics. Pans 1 and 2. Bombay. India: Asia
Publishing House, 1962

“G. Ifrah, From One to Zero. translated by L. Bair. New York: Viking Penguin Inc.. 1985
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commercial telephone numbers. In this sense, the Katapayadi scheme could
be seen as just a ique to help numbers or, at best,
a coding scheme like ASCII to derive numeric values from nonnumeric
tokens, but it is noteworthy that the scheme continued to be used long after
the invention of numeric symbols and, during this time, was put to several
applications. It is the application of the scheme to the particular instance
described in the next section that is remarkably similar to that of modern
hashing.

The verse shown in Fig. 1 (transliterated from Sanskrit using the
International Phonetic Alphabet) describes one version of the Katapayadi
scheme. J.F Fleet’ quotes this from C.M. Whish,* who quotes this from an
unspecified source, but B. Datta and A.N. Singh® state that it is found in
Sadratnamala, which is a treatise on astronomy published in 1823 by
Prince Sankaravarman of Katattanat in North Malabar, India. The prince
was an acquaintance of Whish’s, who spoke of him in high terms as “a very

ian™ Sad, N blish

intelligent man and acute was
with a y in the Mal 1 monthly K
(vol. 16, 1898).

1 and n denote zeros; the letters (in succession) beginning with k, t, p,
and y denote the digits. In a conjoint consonant, only the last one denotes a
number; and a consonant not joined to a vowel should be disregarded.
There are said to be four variations of this scheme, which is claimed as the
reason for its not coming into general use.

4

napavacagca qunjani samkja katapaja:dajah
migre tuzpa:nta hal samk"ja na ca cintjo halasvarah

Fig. 1. Verse describing one version of the Katapayadi scheme.

The transcription scheme is more easily understood from Fig. 2. It lists
the Sanskrit consonants with their associated numeric values as specified in
the verse. Each of the lines except the last consists of stops in the following
sequence: unvoiced and unaspirated, unvoiced and aspirated, voiced and
unaspirated, voiced and aspirated, and nasal. In the first line, the velars are
followed by the palatals; in the second line, the retroflexes are followed by
the dentals. The last line consists of fricatives.

? LF. Fleet, “The Katapayadi System of Expressing Numbers,” J. Royal Asiatic Soc.. BRAS
191 1. pp. 788-794, 1911

¥ CM. Whish, Transactions of the Literary Society of Madras, Part 1, p. 57, 1827.

* KK. Raja, “Astronomy and Mathematics in Kerala: An Account of lts Literature,” Advar
Library Bull., vol. 27, pp. 118-167, 1963
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Fig. 2. i with their numeric values as
specified in the verse.

The interesting verse shown in Fig. 3, also appearing in Sadratmamala,
illustrates an application of the scheme.

badi Misidd"aj i P *u:pagih
Fig. 3. The verse illustrating an application of the transcription scheme.

If we translate the verse from Fig. 3 using the procedure described
earlier in the verse about the scheme, we get

b" =4 (from table)
dr =2 (only the last part of the conjoint consonant, r, is considered)
mb = 3 (similarly, only the b of mb is considered), etc.

This gives the final value 423,979,853,562.951,413. Since it is
known,* that traditional Indian practice was to write number words in
ascending powers of 10, the number represented above, properly, is
314,159,265,358,979,324 which is recognizable to be Just the digits of pi to
17 places (except that the last digit is incorrect, it must be 3). Menninger'®
also quotes an example of the Indian name for the lunar cycle being
anantapura, which in addition to having semantic content itself gives the
Katapayadi value 21,600 (using the consonants n-n-t-p-r), which is the
number of minutes in the lunar half-month (15 x 24 x 60). (It has been
pointed out to me by Dr. Takao Hayashi, Science and Engineering Research
Institute, Doshisha University, Japan, in a personal communication, that this
does not follow from the most popular Katapayadi coding scheme, since in
the conjoint consonant nt, only the t should denote a number.)

The originator of this scheme is not known, as with many other Indian
inventions and discoveries, but it is believed that the scheme was probably
familiar to the Indian mathematician and astronomer Aryabhata I in the fifth

" K. Menninger, Number Words and Number Symbols, translated by P. Broneer Cambridge,
Mass.: MIT Press. 1969.
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century AD and to Bhaskara I in the seventh century AD." The oldest
datable text that employs the scheme is Grahacaranibandhana, written by
Haridatta in 683 AD.” The scheme is said to have been used in a wide

variety of contexts, includi; like gy. A large number
of South Indian chronograms have been composed using this scheme (e.g.,
f works such as Epigrahia Indica 3: p. 38, 4: pp. 203-204, 11: pp.

40-41, 34: pp. 205-206). It is also said that Sankara, the Indian philosopher
of the seventh century, was named so that the Katapayadi value of his name
gives his birthday—215, indicating the fifth day of the first fortnight of the
second month in the Indian lunar calendar.” Not much else is known about
the status or application of this scheme since then. But in the 18th century,
we find a novel revival of it in South Indian musicology, which is arguably
similar to modern hashing. This is described in the following section.

An Application of the Katapayadi Sch

In classical South Indian music, the raga is roughly equivalent to the
Western chord. These ragas are classified according to a unique scheme.
What follows is a brief description of this classification as is pertinent to the
subject of this paper. A more comprehensive treatment of Indian
musicology, its concepts, and terms can be found in the work by Wade.**

A raga can be either a Janaka (root) raga or a Janya raga; the latter is
considered to be a descendant of one of the Janaka ragas. The scale of a
Janaka raga has seven notes in its ascent and the same seven notes in
reverse in its descent. A Janya raga is a modification of its parent Janaka
raga through the deletion of one or more notes and/or possibly the
reordering of some notes in either or both the ascent and descent of the
scale. The seven notes are, respectively, called Sa (Shadjam), Ri
(Rishabh Ga (Gand) ), Ma (Madhy Pa (Panch ), Da
(Dhai ), and Ni (Nishadam). These are the equi of the Western
sol-fa syllables Do, Re, Mi, Fa, So, La, and Ti. The notes Sa and Pa (the
fifth) are considered fixed and must occur unchanged in all the Janaka
ragas. If we consider the octave to consist of the 12 notes C, C*, D, D, E,
F,F G, G" A, A", and B, since C and G are fixed, Ri and Ga can take any
combination of two notes from C*, D, D*, and E. Similarly, Da and Ni can
take any combination of two notes from G*, A, A*, and B; and Ma can take

"' S.N.E. Sen, A Concise History of Science in India. New Delhi. India: Indian National
Science Academy, 1971.

' K.V. Sarma, “A History of the Kerala School of Indian Astronomy: In Perspective,”
Visveshvaranand Indological ~Series 55, Visveshvaranand Inst. Publication 580,
Visveshvaranand Institute, Hoshiarpur, india, 1972.

** P. Sambamurthy. South Indian Music, Book 111. Madras, India: Indian Music Publishing
House, 1983, pp. 44-48

" B.C. Wade, Music in India: The Classical Traditions. Englewood Cliffs. N.J.: Prentice Hall,
1979
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any of the two values F or F". Thus, there can be a total of 2 x ‘C, x *C =
72 possible Janaka ragas. If we arrange these ragas systematically as in Fig.
4, it is possible to derive the notes used by any one of them from its index
in the figure. Accordingly, the 72 ragas are arranged as follows: The first
36 ragas use F as the middle note Ma, and the second 36 use F*. In other
respects, they are identical. Each half of the grid is further divided into six
sections called chakras, each of which has six ragas in it. Each of the six
chakras in each half uses one of the six possible combinations of the notes
Ri and Ga, while, within each chakra, the notes Ri and Ga remain constant,
but Da and Ni take on each of their six possible combinations.

Fig, 4. A systematic arrangement of Janaka ragas.

F =
Chakra | Ri.Ga | Da & Ni | Raga# | Chakra | Ri,Ga | Da & Ni | Raga#
G A 1 A 37
GhAY h2 G A" |38
1 cD |[G'.B 3 7 ot Wl 39
A A" 4 A A" 40
A.B 5 AB 41
A" B 6 A"B 42
G, A 7 G.A |43
GIUAE 4% G A" |4
2 eyl che 9 8 o .B 45
A A" 10 A A" 46
AB 11 AB a7
A"B 12 A"B 48
G A 13 G.A 49
67 A%y s G A% |50
3 CLUEE G B 15 9 C4E 1 G B 51
A A" 16 A A" 52
A.B 17 AB 53
A" B 18 A"B 54
G.A 19 GLA 155
G A% 20 G A" |56
4 D.D* |G B 21 10 |D.D* |G'B 57
A A" 22 A A" 58
A.B 23 A.B 59
A"B 24 A"B 60
G A 25 AT 6T
G A" |26 G A" 11162
S & DyE Gl B iy 14 FDUES(GY. B, i |63
A A" 28 A A" 64
AB 29 A.B 65
A" B 30 A" B 66
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G A 31 G, A 67
GlAY 82 G A" |68
6 DL ER G B 33 12, | DL E L GLEB 69
A A" 34 A A" 70
AB 35 AB 71
A"B 36 A"B 72

This classification makes it easy for us to determine the notes of a raga
given its serial number in the grid. For example, if we were asked to play
the scale of raga number 65, we would know that it uses the note F*, since
65+36+1=2. Since 65 mod 36 =29 and 29 + 6 + 1 = 5, we would know
that it uses the fifth possible combination of Ri and Ga, which is D and E.
Also, since 26 mod 6 = 5, we know it uses the fifth possible combination of
Da and Ni, which is A and B. Thus, the scale of Janaka raga number 65 is:
C,D.E,F',G, A, and B.

This means that given the name of a raga, one need only search for its
raga number. The notes can be mechanically derived from its number.
However, an Indian raga has certain additional musical properties other
than the notes it uses. Frequently, a Janya raga that inherits some properties
from its Janaka raga is described in terms of the modifications done to its
parent that resulted in that particular raga. These are usually discussed
under a description of the Janaka raga and its descendants or, in concise
forms, given succinctly alongside its name in a table. To get complete
information about a Janaka raga, then, a table search to find its position
given its name is presupposed. Things would be even simpler if we could
derive the number of a raga directly from its name. This is precisely what
was done by the South Indian musicologists. Each raga was named in such
a way that a Katapayadi translation of the first two syllables of its name
gives us its number in the table. For example, the raga Mechakalyani gives
us the number 65 (derived from the first two syllables Me and Cha) and
Vanaspati gives four. Thus, it is now possible to go directly to the raga’s
position in its table from its name without having to do a search.

The exact person who coded the names of the ragas seems to be in
dispute, but it is fairly certain that such a codification was complete by the
end of the 18th century. Aiyyangar” states that although Venkatamakhi
lays a claim to this arrangement in 1660, it should be credited to his
grandson Muddu Venkatamakhi in the early 18th century, who added it as a
supplement to the former’s work Chazurdandi Prakasika.

" R. Aiyyangar, History of South indian (Camatic) .Music. Poona, India: Aryabushan Press,
1972.
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Discussion

From an observation of the Katapayadi scheme, it seems that there are
several important differences between it and modern hashing techniques.
Notably, a hashing formula gives a valid bucket number for any given
name, but the Katapayadi scheme gives meaningful results for only some
names. For example, a true hashing algorithm will never give a number
greater than 72 in the above application, whatever the value hashed, but the
Katapayadi scheme will.

A hashing algorithm can also take any input and return a number
corresponding to its position in a table, whereas in the application of the
Katapayadi scheme above, the names of the ragas have been carefully
chosen for the purpose. Thus, it seems more probable that the Katapayadi
formula was intended as a mnemonic technique to help people remember
long numbers. Indeed, the verse from Sadratnamala coding the digits of pi
seems to imply just that. In this sense, the scheme is an exact opposite
of the modern hashing technique, which aims to derive numbers from
names, since it aims to derive names from numbers.

But then its application in South Indian musicology, where there are
only 72 admissible root ragas, is clearly directed at liberating the table-
lookup operation from the constraints imposed on it by the size of the table.
This is the basic aim of a hashing technique. A good hashing algorithm
seeks to perform the operations of insertion, deletion, and lookup with
constant time complexity. The insert and delete operations are irrelevant to
the application outlined above, since the raga names were deliberately
coined and already inserted into the table. But once the table had been
constructed, lookup took a constant time because of the application of the
Katapayadi scheme. The motivation for this must have been similar to a
situation that warrants the application of a hashing strategy now—constant
time table lookup. The result, too, is the same. Here, it is obvious that it
bears a strong similarity to the modern hashing technique. To be sure, the
Katapayadi scheme was initially developed as a mnemonic technique, given
the oral culture of education in early India. Indeed, Sir Monier
Williams remarks' that even the grammar of Panini was mainly intended
to “aid the memory of teachers [rather) than learners by the briefest
possible suggestions.” Nevertheless, it is possible for such a mnemonic
technique to gradually evolve into a scheme that bears a strong similarity to
our modern hashing technique. It is relatively easy to look at this particular
application of the Katapayadi scheme and to come up with a hashing
strategy for some modern requirement. But whether the scheme influenced
later development of the hashing technique is in doubt. It is not certain

'* Sir Monier Williams, Indian Wisdom. Banaras, India: Chowkamba Sanskrit Studies. vol. 36,
1969.
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whether any Indian scholar with knowledge of this technique was a
close associate of any of the proponents of early hashing. And it is
not likely that the proponents of hashing knew about the
Katapayadi technique. Thus, the most one can say at this stage is that
the Katapayadi scheme can be thought of as an early precursor to
the modern hash functions, and its application in South Indian musicology
bears, in retrospect, an interesting similarity to modern hash tables.
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The Panini-Backus Form in Syntax of
Formal Languages

T.R.N. Rao
Center for Advanced Computer Studies
* University of Southwestern Louisiana
Lafayette, Louisiana

Vyaas Houston (1991), in one of his writings, mentions his discovery
of the world’s oldest living language: Sanskrit, the language of ancient
India and Vedic civilization. He states thus:

“It was perfectly clear to me that I had come upon a perfect language, a
language that invokes the spirit, an inexhaustible wellspring of spiritual
inspiration. The ancients called it devavani, the language of gods.
Where did it come from? — A language infinitely more sophisticated
than any of our modern tongues.”

The sophistication Houston refers to is about the formalism and
structure of the language. For computer scientists, in the theory of formal
languages, the word “formal” refers to the fact that all the rules for the
language are explicitly stated in terms of what strings of symbols could
occur, without any ambiguity and the need for interpretations based on
mental skillf. Sanskrit not only has a very rich inflectional structure but
this fact was recognized early by grammarians and it has contributed to the
mystique of the language.

A famous grammar of Sanskrit was compiled by Panini,' who
flourished around 500 B.C., and his work Astadhyayi has been studied in
India for centuries, inspiring many commentaries. The prestige of Panini’s
grammar is so great that the earlier grammars of the language were lost.
Panini’s grammar uses a variety of formal techniques including recursion,
transformations, and metarules. Here we examine one specific feature of
his structure that has been used also in the representation of high-level
languages.

The formal structure of p p ing was
introduced in the 1958-60 period by eminent scientists John Backus (1958),

! Panini, (500 B.C.) The Astadhydyi. Edited and translated into English by Srisa Chandra
Vasu, Delhi, India, 1962.
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and Peter Naur (1963). They headed UNESCO conferences on
International algorithmic language ALGOL 60, a language “suitable for
expressing a large class of numerical processes in a form sufficiently
concise for direct automatic translation into the language of programmable
automatic computers.”

What is BNF notation?

BNF is an acronym originally for “Backus Normal Form” that was
later changed to Backus-Naur Form. BNF notation can be found in any
book on programming languages.

The following, taken from Marcotty and Ledgard (1986), explains the
meta-symbols of BNF.

The meta-symbols of BNF are:
meaning “is defined as”

meaning “or”
< angle brackets used to surround category names.

The angle brackets distinguish syntax rules names (also called non-
terminal symbols) from terminal symbols which are written exactly as
they are to be represented. A BNF rule defining a nonterminal has the
form:

nonterminal

_of_alternatives

of strings of
terminals or nonterminals separated by the meta-symbol |

For example, the BNF production for a mini-language is:

<program> := program
<declaration_sequence>
begin
<s(alemcms_sequence>
end ;

This shows that a mini-language program consists of the keyword
“program” followed by the declaration sequence, then the keyword
“begin” and the statements sequence, finally the keyword “end” and a
semicolon.
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Several authors have used slight extensions of BNF for clarification or
ease of use which we will not go into.

A point of interest here is a in ACM C
from Donald Knuth (1964) arguing on behalf of the acronym BNF to
represent Backus-Naur form rather than Backus Normal Form and gives
three reasons for that:

1. It gives proper credit to both Backus and Naur for their
contributions;

2. It preserves the often used abbreviation “BNF”;

3. BNFis not really a “normal form” in any conventional sense or (a
special or canonical form) and hence it is just a “form™;

Knuth’s suggestion prevailed and BNF has been taken to stand for Backus-
Naur Form.

Another ma_lor point of interest for us is another correspondence in
ACM C ions titled “Panini-Backus Form” by P.Z. Ingerman
(1967), which we reproduce here verbatim.

Knuth (1964), in a Letter to the Editor of CACM, makes the point
that the metasyntactic notation used in, e.g., the ALGOL 60 report
(Naur 1963) should be renamed. In particular, he observes the well-
acceded fact that the so-called Backus Normal Form is, indeed, not a
normal form in any sense. The purpose of this letter is to observe that
Backus was not the first to use the form with which his name has
become associated, although he did, indeed, discover it independently.

Dr. Alexander Wilhelmy has called to my attention* a work by
Panini.** Panini was a scholar who flourished between 400 B.C. and
200 B.C.; perhaps his most significant work was the compilation of a
grammar of Sanskrit. In order to describe the (rather complicated)
rules of grammar, he invented a notation which is equivalent in its
power to that of Backus, and has many similar properties: given the
use to which the notation was put, it is possible to identify slructures
equwalcm to the Backus “I” and to the use of the meta-brackets *
and “>" enclosing suggestive names. Panini avoided the necessity for

* Wilhelmy. A., Private communication dated 5 November 1966

* Kavyatirtha, Narayana Rama Acarya (Ed.) Paninimunipranitah astadhyayisutrapathah
vartikapathasamalankrtah. Bombay, India, 1954
[Kavya, NRA. (Ed.) Panini—Reading of Rules in Eight Chapters, Embellished by His
Pupils).

Pamm Th: Astadhyayl. Edited and translated into English by Srisa Chandra Vasu, Delhi,
India,
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the character " by writing the meta-result on the right rather than
the left [see,’ or Ingerman (1996) for a similar notation).

Since it is traditional in professional circles to give credit where
credit is due, and since there is clear evidence that Panini was the
earlier independent inventor of the notation, may I suggest the name
“Panini-Backus Form” as being a more desirable one? Not only does it
give due credit, but it also avoids the misuse of the word “Normal”.

Summary

The above makes the powerful plea that Backus-Naur Form (BNF)
should be truly called Panini-Backus Form (PBF), as “we must give credit
where credit is due.” Paninian grammars, which consisted of over 4,000
algebraic rules and metarules have been studied by a number of scholars.
Kak (1987), reviews the Paninian approach to natural language processing
(NLP) and compares it with the current knowledge representation systems
of Artificial Intelligence, and argues that Paninian-style generative rules
and metarules could assist in further advances in NLP. Another article by
Staal (included in this book) discusses the consistency of the system of
rules of Panini, as tested by Fowler's Automaton.® These are among the
marvelous contributions of ancient India to computing sciences.
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Panini Tested by Fowler’s Automaton*

J. F. Staal
Department of Philosophy
Department of South & Southeast Asian Studies
University of California
Berkeley, California

In “How ordered are Panini’s rules?” Professor Murray Fowler raises

a valid question: can the i of the adhyayt i as A)
be tested by an automaton? Before answering such a question, one should
specify what kind of consistency and what kind of automaton one has in
mind. I shall begin by considering these preliminaries (1 and 2) and wind
up with a brief discussion of the order of Panini’s rules (3), showing
thereby that Fowler’s “‘cursory examination” (45) is not only inadequate but
also misleading.
e ] Consistency is generally defined as a property of a system of rules.
Such a system is called consistent when it is impossible to derive with the
help of the rules two results which are, in some sense, contradictory or
incompatible. A is consistent in this sense on account of the rule 1.4.2,
which says that in case of contradiction between two rules, the following
rule prevails. This requires the rules of A to be ordered in a special
manner.*
12 For Fowler, i 'y requires well-ordered of Ii
rules, defined as “an arrangement such that the relation of pre-supposition is

intai in a regular ion” (45). More explicitly, a sequence of
rules Ry, -, R, is called well-ordered if and only if, for no rule R; there is a
later rule R; presupposed by R;; or, if and only if:

(R)~ (ER)) [(1 $i<j<n) A (R presupposes R)].

*Reprinted with permission from the author.

' JAOS 85 (1965)44-7.
? See J. F. Staal, “Negation and the law of contradiction: a comparative study”, BSOAS 25
(1962) 53-6.
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Fowler rightly says that the whole of A is not well-ordered in this sense; this
follows from the examples he discusses and it does also follow from many
others. He is also right where he maintains that attempts at well-ordering
the rules (such as Bhattoji Diksita’s in the Siddhanta Kaumudr) can only be
successful if the phrasing of the rules is altered accordingly; in fact it would
have to be altered substantially. Fowler concludes that Bhattoji’s order,
“with the needs of an automaton in mind, seems to be much better than the
original.” This might be true for a particular kind of automaton (see below)
provided the phrasing was altered accordingly; however, this has never
been done consistently, not even by Bhattoji Diksita himself, so that,
against Fowler, we must agree with Boehtlingk (“Spatere Gi iken, die
Panini’s Sitra aus der unverriickbaren Ordnung gebracht haben, um alles
dem Stoffe nach Zusammengehorige aneinander zu reihen, sind ohne
ausfiihrliche Commentare, die stets auf etwas weit Vorangegangenes oder
Folgendes Riicksicht nehmen miissen, ganz unverstindlich und als
Missgriffe zu betrachten”: quoted n.5) and even with Colebrooke (“But the
sitras of Panini, thus detached from their context are wholly
unintelligible...”™). In fact, the Siddhanta Kaumudr is a 'y upon
and an introduction to A, not an alternative to it.

It may be noted that the treatment given to Panini’s grammar by

Bhattoji Diksita is similar to that accorded to Euclid’s Elements by Petrus
Ramus in the XVIth century: Ramus rewrote the Elements by ordering the
theorems according to topic and omitting the proofs.  The logical
significance of geometry, i.e., its deductive character, is thereby lost.
Bhattoji Diksita and Fowler similarly sacrifice the logical structure of A.
2. Fowler’s automaton seems to make sense only if it is interpreted as
a finite automaton; in that case, however, it makes no sense in the present
context, as we shall see. A finite automaton may be considered to be on a
par with a finite state grammar (FSG), which generates a finite state
language (FSL). Referring to tests by such an automaton, Fowler states:
“Excellent grammars are now being written with this test in mind” (44). In
the explanatory footnote he refers to the grammar of C. G. Zull, “A Formal
System for generating French Verb Paradigms” (n.2). But a formal system
for generating paradigms can at most be part of a grammar, it can never be
a grammar in the usual sense: for a grammar is meant to generate
sentences.

Now it is well known that the set of English sentences is not a FSL;
i.e., it cannot be generated by a FSG.* It requires some skill but little
originality to show that Sanskrit is not a FSL either. Hence, if A could be

* Preface to Laghukaumud, ed. J. R. Ballantyne, Benares 1891, i

* See e.g. N. Chomsky, “Three models for the description of language.” reprinted in: Readings
in mathematical psychology. 11, ed. Luce, Bush & Galanter, New York & London 1965, 105-
124,
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shown to be a FSG, it would follow that A would be incapable of describing
Sanskrit. Fowler, who indeed suggests that A would probably generate “a
highly complex” FSL,* does not consider adequacy (“conformity with an
external object”); but for Panini, as for all grammarians, this is a major
concern (formulated in Sanskrit as the requirement of providing rules for all
that is loka “common usage”). In other words, Fowler’s proof that A is not
a FSG is in no way surprising and merely saves A from being seriously
inadequate.

This result can also be established directly. Since it has been shown
that A contains many context-sensitive rules,® it follows, not only that A is
not a FSG, but that it is not a context-free phrase-structure grammar either.
Further, it can be shown that A is also stronger than a context-sensitive
phrase-structure grammar, since it contains rules which cannot be written as
context-sensitive rules.” In short, A contains rules which are strong enough,
in principle, to generate Sanskrit sentences; if A were to contain only rules
of the kind that can be dealt with by Fowler's automaton, it would be
inadequate for describing Sanskrit.

31 A slightly more careful perusal of A will show that the order of its
rules is in many ways crucial; this has been noted by the Indian
commentators, from Patafijali onwards, and by many Western scholars.
Fowler is aware of the fact that “the great problem of anuvriti remains”
(47). In fact, the order of the rules of A should be explained in the first
place by taking the economy criterion (laghava) and anuvrtti into
consideration. Any suggestions for altering the order upset the organization
of the grammar in ways which are not always immediately apparent.
Discussions of this sort, recently by Shefts,® for example, have made it quite
clear that other features may also influence order. That it is simply a desire
to treat certain grammatical topics together which accounts for some
features of order, is especially apparent in the case of anuvrtti of adhikaras
“chapter headings”. This has been studied, for example, by Renou.*

32 The earlier quoted meta-rule 1.4.2% introduces another kind of
order into A: not connected with the phrasing of rules, but with their actual
effect. In these cases altering the order can never be neutralized by re-
formulation. If the structure of the grammar is to be saved from disruption,
there are two alternatives: either the relative order of all pairs of rules to

* 44 n.4, where it is also stated that A “is not very powerfully generative,” “because of the

absolute necessity of lists to complete it.” Is there any grammar that can operate adequately

without a lexicon? There is also some confusion about the “evaluation function” mentioned in

n.1 with a reference to Lg 39 (1963) 599 n.8. itself a reference to the relevant source.

°J. . Staal, “Context-sensitive rules in Panini", Foundations of Language | (1965) 63-72.
Ibid. 68-9.

* B. Shefts. Grammatical method in Panini: His reatment of Sanskrit present stems, New

Haven 1961 cf. Lg 39 (1963) 483-8.

° L. Renou, Etudes védiques et Paninéennes, 1, Paris 1955, 124-6
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which 1.4.2 is applied must remain the same; or it must be reversed in every
case, whilst “following” in 1.4.2 is being replaced by “preceding”.

33 So far the effect of A on a given input can be described as follows:
any rule of A applies to any part of the input, provided the conditions for its
application (often formulated as context restrictions) are fulfilled; if,
moreover, two rules should provide incompatible results, the latter prevails.
But this iption holds good (app see 3.4) for (the largest)
part of the grammar only: the first seven adhyayas and the first pada of the
eighth adhyaya (1.1-8.1). For the last three padas of the eighth adhyaya
(8.2-4) the situation is different: here the rules apply to a given input one
after the other in the given order. This part, which is called the tripadi and
which contains 295 rules (i.e., less than 8% of the total number of rules)
begins with the meta-rule and adhikdra 8.2.1: pirvatrasiddham “(From
now on every rule is regarded as) not having taken effect with reference to
preceding ones.” This means that in 8.2-4 no rule applies until earlier rules
(either, unordered, in 1.1-8.1 or, ordered, in 8.2-4 itself) have been applied.
This rule and its effect have been the subject of a monograph by Buiskool."
34 However, within 1.1-8.1 also arbitrary applicability of rules is
restricted by another application of the principle of asiddhatva laid down by
meta-rule 50: asiddham bahi) ge “that which is bahi) is
(regarded as) not having taken effect when that which is antaranga (is to
take effect).” This means that among the rules of A there are many ordered
pairs. In each pair, the rule that is applied first is called antaranga “inner
cause of the operation™; the rule that is applied next is called bahiranga
“outer cause of the operation.”

An example is provided by 6.1.77, iko yan aci which is antaranga with
respect to 7.3.86 pugantalaghiipadhasya ca. The first rule requires, among
other things, that i should be replaced by y when followed by a vowel.
‘When applied to si + i + na this would result in sy + @ + na (1). The second
rule requires, among other things, that i and u should undergo guna when
certain conditions are fulfilled. When applied to si + @ + na this would
result in se + @ + na (2). Now if (1) is antaranga with respect to (2), we
obtain first sy + @ + na and next sy + o + na; but if (2) is antaranga with
respect to (1), we obtain se + & + na and there is no scope for (1) to apply.
Since, in fact, syona is the correct result, (1) is declared antaranga with
respect to (2). This principle has been studied by Kielhorn," Boudon," and

"*H. E. Buiskool, Parvatrasiddham: Analytisch onderzoek aangaande het systeem der Tripadt
van Panini's Astadhyayl. Amsterdam 1934; the same, The Tripadi, being an abridged English
recast of Pirvatrasiddham (An analytical-synthetical inquiry into the system of the last three
chapters of Panini's Astadhyayi), Leiden 1939,

"' Nagojibhatta, Paribhasendusekhara, ed. F. Kiclhom, 1I, Translation and Notes, Bombay
1874 (ed? K. V. Abhyankar, Poona 1960), 221 sq.
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Renou.” The transformational cycle of phonemic rules, whereby innermost
brackets are first erased," is to some extent reminiscent of this principle.

4. These are some of the features of the types of order underlying
Panini’s grammar A. These and other features can be fruitfully studied
from many points of view. If we distinguish three stages in the study of A
as a generative device, it may be held that the first stage, that of analysis,
has been dealt with ly by Indian since Patafjali,
and by Western scholars of the last two centuries; however, this task is by
no means completed. The second stage, that of formalization, has perhaps
just begun to receive attention; it depends on analysis, but is not determined
by it. The third stage, that of ion, itself d ding on izati

is not determined by formalization; it may not even be effectively
realizable. Despite Fowler’s laudable effort, the fact remains that this has
been hardly touched upon.

'2 P. Boudon, “Une application du raisonnement par I'absurde dans I'interprétation de Panini”
J A 230 (1938) 65-121: 72-8.

" L. Renou. Erudes védiques et Paninéennes, 1, Paris 1956, 140 sq.: cf. the same. La
Durghatavrtti de Saranadeva, Introduction, Paris 1940, 118-9: Terminologie grammaticale du
Sanskrit, Paris 1957, s.v. antaranga.

" See eg. N. Chomsky & G. A. Miller, “Introduction to the formal analysis of natural
languages”, Handbook of mathematical psychology, 11, ed. Luce, Bush & Galanter, New York
& London, 1963, 313-8.

Formal Structures In Indian Logic*

J. F. Staal
Department of Philosophy
Department of South & Southeast Asian Studies
University of California
Berkeley, California

There is a use of the term “model” in which it can be said that a
linguistic expression, in a natural language, is a model for its sense. A
ion of a linguisti ion from one language into another may be
said to provide another model for the sense of the original. If the sense of
alinguistic expression is of a logical nature, the expression can be
translated into an expression of formal logic or into a formula. This is not
surprising, for logic and mathematics came into being when expressions of
natural |; were into formal i which were
more precise and practical and less cumbersome. Subsequently these
artificial languages attained full indep and started a of
their own. Originally, however, these symbolisms could only have been
constructed along the lines by the possibilities of i
and the scope of expression of the natural languages themselves. That
in mathematics and in modern logic such a linguistic origin of the
symbolism has often receeded into the background does not imply that the
origin of certain symbolisms was independent from the structure of
natural languages.'

In view of this background it is not surprising that modern logic
could provide the tools for the ion of logical i used
by the Western logicians from Aristotle onwards. This has been shown
by Bocheriski, Lukasiewicz and many others. It is less evident, on the
other hand, that the symbolism of modern logic should be useful in
the representation of the only formal logic, regarding which there are
good reasons to believe that it developed indep y from P
logic: namely Indian logic. ~Nevertheless modern formalisms have been

*Reprinted with permission from Kluwer Academic Publishers.

! Some examples of such dependence are discussed in the present author's “The construction
of formal definitions of subject and predicate,” to be published in Transactions of the
Philological Society.
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y - into the study of Indian logic by S.
Sen,? S. Schaycr and D.H. H. Ingalls.* 1.M. Bochenski has now written the
first comprehensive history of formal logic which takes Indian material into
account’ That a modern symbolism can actuallybe used for the
representation of Indian logic at all need not imply that this symbolism is
necessarily universal. For Sanskrit, the language in which the Indian
logicians expressed themselves even if their mother tongue was different, is
an Indo-European language and its structure is largely similar to the
structure of for instance Greek or Latin. This holds for its syntax as well as
for its analysis of the parts of speech, both structures which are highly
relevant for the development of a formal logic.
The origins of Indian logic are invisible, but the disciplines of
ped in the ions of later Vedic texts as well as in the
researches of the Sanskrit grammarians. The famous grammar of
Panini (probably IVth century B.C.) reflects a very high level of logical
reasoning and can only be considered as the fruit of a long development,
most of the traces of which are lost. The oldest logical text which has come
down to us is the Nyaya-sitra, which received its present form in the
second or third century A.D. From then onwards an extensive logical
literature was produced in India by Hindus, Buddhists and Jains. Logical
techniques were adopted by some schools of philosophy and criticized and
rejected by others. After a long period of logical discussions, in which the

Buddhist logicians (e.g. Vasubandhu, Dinnaga, D! i) played a large
part,a process of re-orientation took place between the Xth and the
XIIth century. This culminated in the gigantic work of

Gangesopadhyaya (Gangesa) (XIIIth century), founder of the “New
School” (navya-nyaya), when logic became largely free from philosophy,
epistemology and cosmology, and the attention was mainly confined to the
analysis of inference (anumana). Logic thus became an instrument and a
method, and as such it was used in various disciplines. Soon knowledge of
the logical terminology and familiarity with the techniques of logical
analysis became indispensable for anybody writing on matters
hil i ical, ritual and in general. In the following
centuries a new flow of logical literature was produced, mainly in Bengal in
North East India. Among the gencral handbooks then written mention may
be made of the Siddha Ii or Karikavali-muktavali of Vis
Paficanana (XVIIth century) upon which the present study is based.

3. Sen. Astudyon anatha’s 7 h 1924.
*'s. Schayer, Uber die Methode der Nyaya-Forchung, Festschrift M. Wintemitz, Leipzig
1933, 247-57; and in other publications.
“D. H. H. Ingalls, Materials for the study of Navya-nyaya logic, Cnmhndge Mass. 1951. Cf.
the present author”s review in Indo-Iranian Journal 4 (1960), 68-7
* L M. Bocheiiski, Formale Logik, Freiburg/Munchen, 1956, 479-5|7; “Die indische Gestalt
der Logik”.
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Indian logic has every right to be called formal from Gangesa,
and possibily from the Buddhist logicians onwards. It is formal in as far as
it establishes formal rules, the validity of which depends on the structure of
the sentence-expressions only. In such expressions variables occur (e.g.
“reason”, “conclusion”) for which constants (e.g. “smoke”, “fire”) may be
substituted. But while the presence and absence of such
constants determine the validity of an empirical expression, they do not
affect the validity of a logical expression.

The logical expressions are written in a kind of technical Sanskrit,
where use is made of certain features of the Sanskrit language which
lend themselves to a formalised treatment. Foremost among these features
is nominal composition. As it is relevant in the present context to
compare Sanskrit in this respect to other Indo-European languages, a
recent formulation may be quoted: “The capacity to combine

words into p words is inherited by Sanskrit from
Indo-European, and similar formations are found in other IE languages.
Sanskrit differs from the other IE languages in the enormous development
which the system has undergone, which is unparelieled elsewhere.”®

We have elsewhere studied the relation between these linguistic means
of expression and the logical structures.” The present paper is based upon a
part of the material dealt with in that article, which mainly
addresses readers who are familiar with Sanskrit. The present presentation
is confined 1o a i of Indian by means of
symbols and models of modern logic. For the Sanskrit originals the reader
may be referred to the other article.

In the following use is made of the terminology of the predicate
calculus with equality and in addition of the expression axF(x) denoting the
idea “x such that F(x)”. We shall make use of the property: (Ey)(y =
axF(x))&>(Ex)F(x). 1If there are several values of x such that F(x), axF(x)
may denote any of these values: e.g. ax(x’ = 4) may denote either + 2 or - 2.
If(E/x)F(x), there is only one axF(x) which is the same as (1x)F(x).

Two special relations will be introduced in order to represent
relationships expressed in the original text: A(x,y) meaning: “x occurs in
»", and B(x, y) meaning: “x is the locus of y”. In addition we have: (x)B(x,
¥) >(2)A(z, axB(x, y)).

We can now proceed to a formulation of the theory of proof. The
most direct  “means of knowledge” (pramana) is perception.
Unfortunately, perception is not always available. Sometimes an object
which is not perceptible itself can be inferred from a perception. For
instance, we may not be able to perceive fire on a distant mountain, but we

“T. Burrow, The Sanskrit language. London 1955, 207-8.
’ “Correlations between language and logic in Indian thought”, Bulletin of the School of
Oriental and African Studies 23 (1960), 109-122.
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may perceive smoke; and hence conclude that there is fire because of the
smoke.

If a conclusion s can be inferred from a reason 4 we shall write V(A
) (with reference to the initial letters of the Sanskrit terms). A proof
or inference consists in showing under which conditions V(h, s) holds.
Such a proof can be applied if the validity of these conditions can be
established by direct perception. Then V(h, s) is valid, and if h is perceived,
s may be inferred.

Itis said in the first instance that V(h, s) is valid if and only if:

(1) there is an x such that x # 5;

(2) there is a y such that B(y, x), where for x the condition (1) holds;
(3) 1 A(h, y), where for y the condition (2) holds.

In other words a first definition of inference can be written as follows:
VIh, s) & A(h, ayB(y, ax(x # 5))) (Def. ).

Another definition interchanges the order of the conditions (2) and
(3) and can accordingly be written as follows:
V(h, s) €4 A(h, ay(y # axB(x, s))) (Def. II).

These formulas have been constructed in such a way that there is
an isomorphism between the formulas and the Sanskrit expressions in
the original. The possibility of this construction is partly due to the use
of the a-termi Another i: ism may be blished between
the formulas and the following figures.

In terms of these schemes V(h, s) is proved whenever it is possible
to establish the validity of the three steps which lead from s to k in
the direction indicated by the arrows. The validity in each of these
three cases can be established from direct perception.

This approach is not very different from the interpretation of a part
of mathematics as a set of inferences of the form: “if the axioms. AL A, ...,
A, are valid, the theorem T} is valid”, etc. In both cases the inference is
formulated in all generality, whether the premiss is valid or not. In both
cases the validity of the inference implies that the conclusion holds
whenever the initial conditions or axioms hold.
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TR
|

V (smoke, fire) is valid:
Def. L.

ax(x # 5): absence of fire.
ayB(y, absence of fire):lake.
1 A (smoke, lake).

Def 11
TR
A B

| l

ye————x

EXAMPLE

Def. I1.

axB(x,s): kitchen.
ay(y # kitchen): lake
1 A (smoke, lake).

smoke ——»ﬁlt-: smoke ———»ﬁr
A | l A ' l B
lake «————absence lake «————kitchen
B of fire
COUNTEREXAMPLE
V (fire, smoke) is invalid:
Def. L. Def. II.
ax(x # 5): non-smoke. axB(x,s): smoky place.
ayB(y, non-smoke): ay(y # smoky place):

red-hot iron bar.
A (fire, red-hot iron bar).

red-hot iron bar.
A (fire, red-hot iron bar).
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fire ———— smo‘(e fire ———— smore

s e ey
red-hot k d-h ky place
iron bar B iron bar

After applying these and other similar definitions to many cases
and submitting them to various tests, some definitions are accepted
whilst others are rejected. The two definitions mentioned here are rejected
for two main reasons, which will be shortly referred to.

a) If (y)B(y, x) then: (z)A(z ayB(y, x)) or: (2)A(z, ayB(y, ax(x #
5))), which contradicts definition I. Similarly, if (x)B(x, s) then:
(Ey)(y # axB(x, s)), which prevents the application of definition II.
Such so-called unnegatable or omnipresent terms, defined by
(x)B(x, s), are actually available: for instance “knowable”, which
may also occur as aconclusion of a proof, for instance in the
infe V( ). Hence the ition should
account for the validity of such an inference, although it is unable
to do so.

b) There are other cases where the definition does not enable us
to prove a conclusion which seems to be intuitively acceptible. As
the example produced by the Indian logicians involves abstruse
Nyaya categories, a modern example may illustrate the difficulty.
Consider again the valid inference V (smoke, fire):

axB(x, fire): kitchen.
ay(y # kitchen): my mind.
A (smoke, my mind).

Here we have played a kind of trick:  while “kitchen” is
undoubtedly different from “my mind”, “smoke” must occur in “my mind”
whenever I think of smoke. Hence the inference seems to be shown to be
invalid, though it should be valid. The difficulty lies in the kind of
occurrence of “smoke” in “my mind”. What is evidently needed is a further
precision of the occurrence relation A: the manner in which “smoke”
occurs in “my mind” when I think about it is different from the manner in
which smoke generally occurs, as examplified by its occurrence (or non-
occurrence) in the kitchen. Now the general place where something occurs

COMPUTING SCIENCE IN ANCIENT INDIA 65

whenever it occurs “properly” is called its residence and will be denoted by
p- The additional condition, which should hold in order that the definition
be valid, is that & occurs through A in the same manner in which it occurs in
p. The different kinds of A can now be distinguished by means of bracketed
subscripts, such as: Ay, Ay, ... Then the A in definition I (and analogously
in definition II), should be specified as follows:

azAqfh, p) = azA(h, ayB(y, ax(x # 5)))
Vb, $) == 1A . pil b, ayB(y, ax(x # 5))).

If this is applied to the case of occurrence of “smoke” in “my mind”, it
is evident that: azA,.) (smoke, my mind) # azA,, (smoke, p).

Hence: 1A/ osmoke. p)) (smoke, ay(y # axB(x, fire))), which establishes
the validity of V (smoke, fire).

There are several other insertions to the original definitions,
enabling them to meet various tests. One source of difficulties is the lack
of quantification, which in the above was partly expressed by the absence of
quantifiers and partly by the ambiguity inherent in the expression axF(x).
Several insertions consist therefore of gradual quantifications.* On the
whole many definitions were studied and compared on their respective
merits. Some were referred to by special names, such as “the tiger”, “the
lion” - the authors being nicknamed the Tiger-cub and the Lion-cub. The
objection of the unnegatables applies to several definitions and does not
seem to have been challenged itself: the final definition, which is accepted
after all the others have been convincingly refuted, does not make use of
negative expressions.

The study of Navya-nyaya logic is still in its infancy. Of the huge
mass of manuscript material only a fragment has been published. Even of
the considerable amount of published material only a small part is read.
Yet the study of this logic is indispensable for an understanding of the later
phases of Indian philosophy.

To Western logicians Indian logic may be interesting because it
developed into a formal logic without being influenced by Western logic
and starting from an entirely different background. In studying the problem
of the universality of logical principles, or the question of the relation
between logic and language, it is a great advantage to be able to look
beyond the horizon of Western formal logic to the formal logic of India:

* For instances cf. the present author's “Means of formalisation in Indian and Western logic”,
Proceedings of the Xith International Congress of Philosophy (Venice 1958).
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“denn sie”, says Bochenski,” “- und sie allein - bietet dem Historiker eine
Moglichkeit von hochster Bedeutung, nimlich die des Vergleichs.”

°Op. Cit. 486
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Note:

The following is from a recent work by Dr. Staal. It will be published
in a forthcoming book entitled; Giant Leaps into the Realm of Knowing.

(3) The use of default notions shows that these early scientists were as
much concerned with the objects of their scientific description and
analysis as with the language of science itself. In ritual, there are many
offerings or oblations, many priests, and many implements. It would
be counterproductive to mention each time which of these have to be
selected. Default applies when no other option is specified. The
default oblation is clarified butter; the default priest, the Adhvaryu of
the Yajurveda; and the default implement, the ladle called juhi
(“tongue”). There are degrees of default: when “tongue” is already
used, and no other implement is specified, the oblation has to be made
with the help of another ladle called sruva (“flowing”).

The ritual manual of Apastamba (fifth or fourth century B.C.) uses this
default system (one of several) and explains its use by means of four
meta-rules in the terse sitra-style:

24.1.23. When “he makes an oblation” is enjoined, “of clarified butter”
should be understood;
24. as agent the Adhvaryu;

26. when used, with the sruva.

! 25. as implement the juhii;

[ juhotiti codvamane sarpirajyam pratiyat | adhvaryum kartaram |
Jjuham patram | vyaprtayam sruvena Il |




Planets In The Vedic Literature*

David Frawley
American Institute of Vedic Studies
Santa Fe, New Mexico

A deeper examination of Vedic literature reveals a profound tradition
of astronomical observation that was previously overlooked, because it is
hidden in religious symbolism, not clearly stated in rational terms.

1. Vedic literature reflects a clear tradition of astronomical observation
through the 27 or 28 Naksatras (constellations of the Moon), along
with other astronomical data, including various solstice and equinox
positions of great antiquity.

2. Notice of the Naksatras, which are often very dim groups of stars,
requires notice of the planets, which are brighter even than the
brightest stars.

3. The planets are primarily mentioned as a group of five or seven
(including the Sun and the Moon) or as 33 or 34 along with 27 or 28
Naksatras and the Sun as wives of the Moon.

4. The Vedic ritual was based on union with the Sun, Moon, stars and
planets and thereby required an ongoing observation of their
positions.

5. The Vedic Gods and seers have astronomical correlations relative to
the stars and planets.

6. The Planets can be seen as forms of Soma cups.

7. The Planets can be seen as forms of Agni, particularly the Planet
Mars.

8. Evidence for observation of the Planets appears in Vedic literature
through numbers that resemble those of the sidereal and synodic
periods of planets, particularly the numbers used in the building of
the fire altar, as well as the hymn totals of the different books of the
Rg Veda.

Introduction

The Vedic literature, the most ancient literature of India, including the
Brahmanas and early Upanisads, contains no listing of the five planets by
name. The Vedanga Jyotisa, the earliest Vedic astronomical text, mentions

*Reprinted with permission from the author and the Indian National Science Academy.
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the Sun, Moon and constellations (Naksatra) but not the planets. The first
clear reference to the planetsby name is found in the epic, the
Mahabharata (Udyoga Parva 143.8-11, Bhisma Parva 2.32; 3.11-18, 27-
28), which is generally dated around the second century BC (though much
of its material is regarded as several centuries or more older). For this
reason some scholars have proposed that the Vedic people were not aware
of the planets and knowledge of them came from an outside source,
possibly as late as the Greeks after the time of Alexander (300 BC).

There is, however, much evidence to show that the Vedic people did
know of the planets, but that existing Vedic literature, being non-
astronomical in nature only referred to them indirectly and symbolically,
and generally as a group among the other heavenly bodies. The
Vedanga Jyotisa being concerned with a calendar depending upon Sun and
Moon positions relative to the Naksatras did not need to consider the
planets and hence does not mention them.

The Vedas contain a system of astronomy dividing the zodiac into 27
or 28 lunar constellations (Naksatras). The full listing of Naksatras occurs
as early as the Yajur Veda (7aittiriya Samhita IV .4.10), and Atharva Veda
(XIX.7), while several Naksatras and the term Naksatra itself occur several
times in the oldest Vedic text, the Rg Veda. The Brahmanas describe
positions of the new, full, or half moon in these Naksatras, including as
beginning the year (for example Kausitaki Brahamana IV 4-12; V.1-2).

It should be noted that the Naksatra system is a highly practical and
scientific division of the zodiac, because it provides a different constellation
for the Moon tooccupy every day. Thereby it allows for precise
observation of the Moon's position relative to the stars. Once it is
determined what Naksatra the Moon occupies, the Naksatras for the
remainder of the month will follow in sequence.

The number of Naksatras being either 27 or 28 is a reflection of the
fact that the Moon traverses the zodiac in 27.3 days. To keep the sequence
in order a twenty-eighth Naksatra has to be inserted periodically. This is
like the lunar months being 12 or 13 as there are 12.3 lunar months in a
year, necessitating the insertion of an occasional intercalary month.

We will not go into the controversial issue of the dating of Vedic texts.
The most conservative estimates place them in the pre-Buddhist era from
the Rg Vedato the Brahmanas about 1500-700 BC. The most liberal
estimates, including those done in light of recent archaeological evidence of
the Sarasvati river in India, pushes the earlier texts before 1900 BC, when
the Sarasvati river which they prominently mention ceased to exist as a
perennial stream. This agrees with the aslronomy of the texts also. The
Brahmanas place the Krttikas (Plelades in Taurus) in the eastern direction

Brah 11.1.2.3), the direction of the vernal equinox. The
Aiharva Veda (X1X.7.2) places the solstice (ayana) in Magha (Leo). Such
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data reflects a period of around 2500-2000 BC. For information on this
subject one can examine my book Gods, Sages and Kings: Vedic Secrets of
Ancient Civilization.'! The point of this particular article is to show that
there was a Hindu knowledge of the planets back into the Vedic era.

Naksatra Observation Necessitates Notice of the Planets

The Naksatras often consist of relatively faint stars, third magnitude
and dimmer, which are hardly noti to the bri of the
planets. It is totally illogical to believe that a culture could notice so
precisely these dim fixed stars along with the Moon's position within them
and not notice the planets which are much brighter than any of the
Naksatras. That the Vedic people knew of the Naksatras but not the
planets would be like stating that a culture knew of the planets but not the
Moon. Hence the very existence of the Naksatra system suggests that the
planets were known to the Vedic people.

In fact since a number of the Naksatras are made up of dim stars it is
difficult to note the Moon’s position relative to them clearly. The brighter
Moon causes several Naksatras to become almost invisible. In this regard
an observation of the planets helps greatly and would be discovered quickly
as an additional aid in observation. Jupiter stays in a Naksatras for over
five months, and Saturn for over a year. When one of these bright planets is
located in a dim Naksatra, the Naksatra can be easily observed through the
particular planet located there. The position of the planet could be clearly
noted on a moonless night, and then the Moon's conjunction with it would
provide an accurate delineation of the Moon'’s position in it.

The planets follow the same zodiacal band as the Moon and thereby
appear as its companions. Judging the Moon's position with the help of the
planets on this band is much easier. A number of even brighter Naksatras
(like Svati or Arcturus) are far removed from the ecliptic and do not provide
a precise determination for the Moon'’s position in the zodiac. Therefore,
observation of the Naksatras would require noting of the planets,
particularly the outer planets Mars, Jupiter and Saturn which stay distant
from the Sun for long periods of time, to provide clarity in determining
Naksatra positions.

The Term Naksatra Originally Included the Planets

There is evidence that the term Naksatra originally included the
planets, along with the Sun and Moon. Naksatra probably originally meant

! Frawley, David. Gods, Sages and Kings: Vedic Secrets of Ancient Civilization. Salt Lake
City: Passage Press, 1991 and Delhi, India: Motilal Banarsidass 1993; Rajaram, Navaratna
and David Frawley. Vedic Aryans and the Origins of Civilization. St Hyacinthe, Canada:
World Heritage Press 1994
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star or heavenly body, which would naturally include the planets. We
should note that all cultures originally included the planets among the stars
and discriminated between fixed and moving stars, the latter being the
planets. We would expect the same inclusion in the earlier phase of Vedic
astronomy.

In the Mahabharata (1.66.16-16) and Purdnas the Naksatras are
considered to be the daughters of the creator Daksa, who were given as
wives to the Moon, of which RohinT was the favourite. The Moon as the
moving force was i to be ine, and the Nak as the
places through which he travelled were regarded as feminine.

However, in the Yajur Veda (Taittiriya Samhita 11.3.5.1) the daughters
of Prajapati (another name for the creator Daksa) are said to be 33, not 27.
They are also given in marriage to the Moon, of which again RohinT is the
most favourite. Who were these 33?

It is unlikely that these were 33 constellations, because such a division
of the zodiac makes no sense. The division by 27 provides the Moon with a
different constellation every day. A division by 33 would cause
insurmountable difficulties to calculate, particularly for calendrical
purposes, which was the main use of the Naksatras. If the 33 included

iacal i there is no lanation as to how the Moon
could unite with them as it would never pass through them. Hence we can
rule out the 33 being constellations.

There are 33 Gods in Vedic literature which are said to be the 8 Vasus,
11 Rudras, 12 Adityas (Suns) and 2 Asvins. This could not have been the
group of 33, as the Vasus and Rudras relate to phenomenon of the earth and
atmosphere, not the heavens, and are not considered to be wives of the
Moon.

Meanwhile we note that in the Rg Veda (VIL.86.1; X.88.13) the term
Naksatra is used for the Sun. This means that it could have been used for
other heavenly bodies like the planets. Elsewhere in the Rg Veda there are
34 lights of a common nature of which the most important is the Sun.

Vast is that secret name and all-reaching, through which you
generated what has been and what will be. The five beloved ones have
entered into its original born beloved light.

He filled the two firmaments and the middle region, the five Gods
by the seasons seven by seven. With thirty-four lights of common
nature and diverse laws his light spreads in many ways. Rg Veda
X.55.2-3.

The 34 must be the 27 Naksatras, Sun and Moon and five planets. The
five Gods may also be the five planets.
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The sacrificial horse, identified with the Sun (Rg Veda 1.163.2), is
divided into 34 parts (Rg Veda 1.162.18), which are divided according to the
seasons (Rg Veda 1.162.19). As the horse sacrifice (asvamedha) is one of
the most important Vedic rituals, it appears that the planets were included in
this symbolism. In fact we note that the Naksatras are said to be the form
(ripa) of the sacrificial horse and the year is said to be his soul (Yajur
Veda, Taittiriya Samhita V11.5.25; Brhadaranyaka Upanisad 1.1). The
planets, therefore, must have been among these 34 parts of the horse which
is all the Naksatras, including the Sun.

Therefore, the 33 wives of the Moon are the 27 Naksatras, the Sun and
the five planets and the Moon himself is the thirty-fourth. Affirming this
we note that there is an entire hymn in the Rg Veda (X.85), which also
occurs in the Atharva Veda (XIV.1), describing the marriage of the Moon
God with the Sun Goddess, which apparently occurs at the winter solstice.
Just as the Sun and the constellations were regarded as wives of the Moon,
so must have been the planets.

The Moon is the fastest moving of the heavenly bodies. In this regard
it could be looked upon as the male who activates or fertilizes the other
heavenly bodies it comes in contact with, including the Sun and planets
which move slower than it does. The Rg Veda (1.105.10) also speaks of the
five bulls that dwell in heaven, which are probably the five planets. As the
Moon by moving through the Naksatras activates them, so must the other
planets. To call the planets bulls (uksa) suggests this impregnating action.
If this action of the planets was known, it must have been watched and
calculated.

There are also said to be seven horses of the Sun (Rg Veda 1.164.2).
These seven probably included the Sun, Moon and five planets, as the horse
has been identified as having the form of the Naksatras.

The Vedic Ritual as Gaining the Heavenly Bodies
The heavenly bodies were important to the Vedic religion, in fact
central to it. The Taittiriya Brahmana 1.V .2 states:

Those who sacrifice here atlam (nak:are) heaven beyond. This is
the nature of the A (

The idea is that by the sacrifice one goes to the heavenly bodies and their
resident deities. The very term Naksatras means what is obtained by
sacrifice.

A similar verse occurs in the Rg Veda (X.22.10), which speaks of “the
secret of the peoples of the seers who have the power of the Naksatras
(guha yadi kavinam visam naksatrasavasam).” Yet more clearly the Rg
Veda states:
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Like a dark horse ornamented with pearls, our fathers (the seers)
made the Naksatras. They placed the darkness in the night and the
light within the day. Brhaspati broke open the rock and found the rays
(cows). Rg Veda X.68.11.

Not only do the seers gain the stars, the original seers, the Vedic fathers,
were regarded as creators of the stars. How could they fail to include the
planets among them, the brightest of the stars? Their leader in fact here is
Brhaspati, whose planetary role as Jupiter would make perfect sense here.
Jupiter is the planet that is most regular in its movements, its brightness and
its closeness to the ecliptic. Hence it would quite likely be regarded as a
prototype for cosmic law.

Meanwhile, the Upanisads contain paths that lead to the Sun and the
Moon (Chandogya V.10). This again related the goal of Vedic knowledge
to the reaching of various heavenly bodies, the foremost of which is the
Sun. The Taittiriya Aranyaka 1.11.49 states:

The seven seers and Atri, all the Atris and Agastya, dwell with the
Naksatras giving blessings.

The seven seers are identified with the stars of the Big Dipper also
called the Bears, Rksas, by the Vedic people. Agastya as the eighth is the
star Canopus. However, other stars and the planets have been identified
with the Rsis. These ideas reflect connections between the stars and karma,
such as became the basis for astrology. In this regard the Mahabharata
states (Udyoga Parva 29.15), “the Naksatras beyond shine by karma.”

The two main Rsi families in the Rg Veda are the Angirasas, of which
Brhaspati is the foremost, and the Bhrgus of which Kavi, Usanas or Sukra is
the most important. Brhaspati is the Hindu name of Jupiter and Sukra of
Venus in later Hindu astronomy. Brhaspati as the priest of the Gods
corresponds well with the role traditionally given to Jupiter. Sukra as the
priest of the demons as well as the Gods agrees with the role of Venus. In
fact one Bhrgu seer is called Vena (note Rg Veda X.123), perhaps the
ancient Vedic equivalent of the Roman Venus.

While some scholars have argued that the planetary identity of these
seers came later, it is difficult to believe that the Vedic people could so
faithfully and logically note the Naksatras, noting where the Moon resided
every day, and failed to note Venus and Jupiter which are much brighter
than any star! These are the two stars that are most like seers and have ever
inspired human beings to greater visions.

In this regard Vedic astronomy employs a 60 year cycle based upon 5 x
12 years, with 12 years being the period of Jupiter’s orbit around the Sun.
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Such a 60 year cycle is found among the Chinese, who also have 28 lunar
constellations and call the seven stars of the Big Dipper the seven seers, just
as in the Vedic tradition. These traditions are not found in Greek or
Babylonian astronomy. Such a Naksatra related Jupiter calendar would
naturally suggest a knowledge of Jupiter along with that system.

In traditional Hindu astrology each planet is related to a particular
Vedic seer family, as well as to certain deities. In this regard Indra, the
greatest of the Vedic Gods, is associated with the planet Jupiter. This is
quite impelling in that Roman Jupiter or Dyaus Pitar as the giver of the
rains is clearly the Roman equivalent of Vedic Indra.

Yet while the ancients named the planets after their Gods, this does not
mean that the Gods and their activities only referred to the planets. We
cannot accept all the mythology of the Greco-Roman Gods as planetary in
nature, even for deities like Jupiter or Mars who had planetary
correspondences. Similarly Vedic Gods like Brhaspati or Indra stood for
much more than one particular planet. The point is that we cannot exclude
the planets from their symbolism.

Planetary Mythology

The Hindu names of the planets and their mythology is uniquely
Hindu, which is another reason why one cannot easily attribute knowledge
of them to a foreign influence. Hindu mythology of the planets is given in
terms of Vedic and Hindu Gods like Visnu, who is the deity of Mercury,
and Siva, whose son, Skanda, relates to the planet Mars, Brhaspati and
Jupiter, Sukra and Venus, Yama and Saturn.

Most interestingly the two main families of Vedic seers, are the
Angirasas and the Bhrgus, with Jupiter (Brhaspati) and Venus (Sukra) who
are their main leaders. These two groups often struggled. The Bhrgus as
the gurus of the Daityas or demons, and the Angirasas as the gurus of the
Gods become involved in the famous war between the Devas and Asuras
(demons). This began when Brhaspati’s (Jupiter’s) wife Tara (meaning the
stars), was abducted by Soma (the Moon). This led to a war in heaven.
Sukra (Venus) aligned himself with the Moon and the demons.
Rudra (apparently Mars) aligned himself with Jupiter and the Gods. Tara
gave birth to Budha (Mercury) who is accepted as a son by both Jupiter and
the Moon, though he was actually the son of the Moon.

This story contains an astronomical riddle. Jupiter is the brightest star
in the night sky, and as such rules over the other stars. When the Moon
appears however, it steals the light of the stars or metaphorically speaking
takes away Jupiter’s wife. Venus, which can never get far from the Sun,
appears only in the morning or evening sky, not in the dark of night when
Jupiter reigns supreme. Hence Venus isallied with the Moon. Mars
similarly is allied with Jupiter as a night star. Mercury appears like a night
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star, lacking the brilliance of Venus, but is found only close to the Sun in
the twilight hours, thus allying itself with Venus and the Moon.

This story is furthermore related to the original Vedic kings and
ancestor figures. Vedic lineages start with Manu, the Vedic original man,
who is said to be the son of the Sun. He has a daughter named Ila (which
also means speech). She marries Budha (Mercury, the planet of speech),
the son of the Moon (Soma), which was during the time of the war between
the Gods and Demons. This starts the lunar dynasty of kings which was the
main dynasty that ruled ancient India.

We should also note that Manu has a twin brother named Yama, who
became the God of death, and was also the son of the Sun. In Hindu
mythology Saturn is also a son of the Sun and the God of death.

This battle between the Moon and Jupiter suggests that the Vedic
people not only noticed the Naksatra of the Moon but also that of Jupiter.
Jupiter stays in a Naksatra around 160 days, meaning that it covers two
Naksatras in the Naksatra year of 324 (12 x 27) days. The Jupiter calendar
as mentioned in later astronomical texts was an imitation of the Moon
(Sarya Siddhanta XIV.17).

The Planets as Graha or Soma Cups

The Atharva Veda contains clear references to the planets and the
nodes of the Moon in a hymn that relates to various astronomical and
meteorological phenomena. For the planets it uses the term graha, which is
the classical Sanskrit term for them.

May the earthly and atmospheric powers be peaceful to us. May
the planets that move in Heaven (divicara grahah) give us peace. May
the planets (grahah) and the Moon give us peace. May the Sun and
Rahu give us peace. Atharva Veda XIX 97, 10.

This hymn not only mentions the planets but also Rahu or the north
node of the Moon, which suggests a knowledge of eclipses and possibly the
ability to predict them. Another name for Rahu, Svarbhanu appears in Rg
Veda (V.40). Yet another hymn from the Rg Veda (X.72.9), while speaking
of the seven sons of Aditi or Adityas, whom I would identify with the Sun
and Moon and five planets, adds an eighth called Matanda or the mortal
egg, which is responsible for birth and death. This eighth sun which is
imperfectly born or mortal, I would also identify with Rahu. The eclipses
of the Sun reflects the births and deaths of creatures, as each time the Sun is
eclipsed it dies and is reborn.

The term for planet, graha, is very interesting, because it is a ritualistic
Vedic term for the cups of Soma that can be offered to the different Gods.
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The Soma cup is well known to be the Moon which is filled during the
waxing half and emptied during the waning half.

The wise sages with their words fashion the one being, the eagle,
in various ways. Sustaining the meters in the rituals, they measure
twelvefold the cups of Soma (graha mimate dvadasa). Rg
Veda X.114.5.

The twelve grahas are obviously the twelve moons of the year. The
planets, like the Moon, also have their motions whereby they wax and
wane. This is most true of the planets which are inferior to the earth’s orbit,
namely Venus and Mercury. Venus most noticeably fills with light as it
moves from the Sun and loses that light as it falls back into the Sun and
disappears.  Yet Mars also goes through significant fluctuations of
brightness during its synodic period. Undoubtedly, the term graha for
planet arose from this observation of the fluctuations in planetary light like
the Moon. The term graha, thereby, suggests an observation of the waxing
and waning of the brightness of the planets through their synodic periods.

The term graha for planet indicates that the planets may have been an
integral part of rituals wherein different cups or grahas were offered to the
God (who himself is Heaven or the Sun). The planets may have been
considered to be different types of Soma cups.

Two Soma cups are particularly interesting. One is Sukra said to relate
to the Sun and Manthin related to the Moon (Satapa[ha Brahmana
1V.2.1.2). Sukra as a name for Venus may be meant here, as the brightest
star it could be related to the Sun. Manthin could be Mercury who is the
son of the Moon in Vedic astrology.

The Rg Veda (IX.114.3) speaks of seven suns (dityas) relative to the
seven directions, which may be the Sun, Moon and five planets. They are
related to the seasons, which in India are six with the seventh being the Sun
as the year (samvatsara). In classical Vedic astrology the six seasons of
spring, summer, rains, autumn, the cold and the frosty seasons are ruled by
Venus, Mars, Moon, Mercury, Jupiter and Saturn. This may reflect an
earlier Vedic view. The six seasonal Soma cups (rtu graha) may have had
planetary correspondences.

Planets and Agni

The planets would also be likely to be regarded as forms of Agni or the
Vedic sacred fire. The reason is that when fire rituals were done at night,
the stars would be imagined to be like sparks from the fire and Agni rules
all forms of light.

In Hindu mythology since the Mahabharata (Vana Parva 223-233) the
deity ruling Mars, Skanda, the son of Siva, is said to take birth through
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Agni. Skanda is born in the same Krttika Naksatra ruled by Agni (which
rulership is first mentioned in the Atharva Veda XIX.7 and Yajur Veda
Taittiriya Samhita 1V.4.10), and Atharva Veda XIX.7 listings of the
Naksatras). Skanda has six mothers as the (Kritika) Pleiades and the
seventh which is Uma (Parvati). Agni in the Rg Veda is also said to have
been conceived by seven mothers or seven voices (Rg Veda IIL.1.6).

Agni has several forms. In his universal form he is the Sun,
Vaisvanara Agni. Yet he also has the form of a child (Kumara), which is
related not only to Skanda but to Rudra. This child form of Agni appears to
be related to the night and to the Earth. In Hindu thought, Mars is
considered to be the son of the Earth, and Agni is enkindled in the Earth
altar (Vedi). Earth is corresponds to the night as Heaven is with the day.
Hence Agni the child may be the same as Mars-Skanda, the warrior- child.

Those practicing fire rituals at night and noting the Naksatras would be
impelled to identify Agni with Mars. Mars is the red and fiery planet. It
also undergoes significant changes in its brightness through its synodic
period.

Mars in Hindu thought is also associated with agriculture as Ksetrapati
or the Lord of the field (Rg Veda IV.57.2, which verse is used for the
worship of Mars in later rituals). Perhaps Mars moving through the sky
was thought to imitate the ploughing of the Earth. Vedic agriculture began
with the burning of the land by fire. Hence Agni also relates to agriculture.
Agni in his child form emerges from the field, preparing his weapons (Rg
Veda V.2.2-3).

Planetary Periods

There are two types of planetary periods, synodic and sidereal. The
synodic period measures the period between the two brightest appearances
of the planet was probably the most important of the two. This fluctuation
of brightness is most in evidence relative to Mercury (116 days) and Venus
(584 days), the inferior planets. Yet Mars as a superior planet has a
noticeable synodic period (780 days). The synodic periods of Jupiter and
Saturn are much less noticeable in their fluctuations and not much longer
than a year (399 days and 378 days). As Mercury is always close to the Sun
and difficult to observe one would expect that the synodic periods of Venus
and Mars would have been more likely to have been noted.

The sidereal periods of Mercury is (88 days) and Venus (225 days). Of
these periods those of the superior planets, particularly Jupiter and Saturn
would be more evident measures of time because of their greater length
(4333 days and 10,760 days, which approximate 4320 and 10,800). The
period of Mars is 687 days. The number 432 (Rg Veda IV.58.1) and its
various multiples is common in Vedic lore, so is the number 108 and
10,800 (Satapatha Brahmana X.4.2.25). The importance of these numbers
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may reflect at least in part an approximation of the periods of these planets
(though this is not explicitly stated anywhere).

The Vedic fire altar (Sampalha Brahmana X.4.3.13) is enclosed by
three Layers of bricks’ for the three worlds of Earth, Atmosphere and
Heaven, consisting of 21, 78 and 261 for a total of 360. 78, the atmospheric
number, is 1/10 of the synodic period of Mars (780 days). 261, the
heavenly number (which would include the stars), is 1/3 of the synodic
period of Mars plus one.

That numbers for Mars would appear in the Vedic fire altar makes
sense owing the later Hindu identification of Mars and Agni, the Vedic ﬁre
The synodic period would be more imp as it the
of Mars between its dimmest and brightest appearances, mimicking the
enkindling and blazing up of the fire altar.

Such correspondences with Mars, however, need not exclude
other cor to various calendrical or i i
that can also be found in these numbers. The Vedic sages would have
created as many sides and comprehensive a symbology as possible in the
Vedic attempt to recreate the entire universe in the ritual.

The Rg Vedic Astr ical Code of Subhash Kak

Subhash Kak has shown that the numbers of the hymn totals in the
different books of the Rg Veda contains much astronomical information
including the Naksatra year (324 days), the lunar year (354 days), the
distance between the Sun and the earth (108 solar diameters) and both the
synodic and sidereal periods of the planets.’ Such numbers were encrypted
in various combinations that are beyond any mere chance occurrence. The
information in this article gives additional information to support that the
Vedic people observed the planets.

Conclusions

In the early Vedic period the planets were included among the
Naksatras or stars as the 34 lights or 33 wives of the Moon. About the
time of the Yajur Veda the term Naksatra became more limited in meaning
to the fixed star systems along the zodiac 27 or 28 in number. At this time
the planets became differentiated as Soma cups (graha), and a more defined
mythology of the planets gradually emerged including Vedic deities and
Vedic seers, yet with probable antecedents going back to the Rg Veda.

* Kak, Subhash, “Astronomy in the Satapatha Brahmana, Indian J. of History of Science. 28,
15-34, 1993; Kak, Subhash, “The structure of the Rgveda™, Indian J. of History of Science, 28,
7179, 1993; Kak, Subhash, Current Science, Vol. 66, No. 4, 323-326, 1994

* Kak. Subhash, The Astronomical Code of the Rgveda. New Delhi: Aditya Prakashan, 1994
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Astronomy in the Vedic period to the time of the Brahmanas included
noting the position of the Moon (and Sun) in the 28 Naksatras noting
solstice points, as the Vedic ritual year began with the winter solstice (note
Kausitaki Brahmana XIX 3).

It also involved a calculation of the phases of the Moon and the lunar
days or Tithis (a 30 fold division of the lunar month of 29.5 days). In
addition, it must have noted the movements of the planets, particularly the
Moon’s conjunction with them. Such combinations (lunar yogas) are well
explained in classical Vedic astrology which has no real counterpart among
the Greeks.

The Vedic ritualists saw union with the heavenly bodies as the goal of
their practice. This could include merging into the Sun, the Moon, the
Naksatras or other stars (like the stars of the Big Dipper or Canopus). It
must have, therefore, included the planets as well. The Vedic seer families
of the Angi and Bhrgus i Ives with the planets Jupiter
and Venus as these were the two brightest planets. There may have been
longer Vedic calendars based upon these planets, like the 60 year cycle of
Jupiter. The Vedic kings traced their descent from the Sun and Moon
apparently with symbolic connections with Mercury, and with Jupiter
and Venus as relating to their pneslly guldes, lhe Angirasas and Bhrgus.
Hence lhere are strong h the Vedas

an early and i dent tradition of observation,
including the planets. This matter requires further exploration, which
necessitates giving up the idea that thereis no real astronomy or
mathematics in the Vedas, which now appears as no more than a prejudice
of Eurocentric thinking.
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Indian texts consider light to be like a wind. Was any thought given
to its speed? Given the nature of the analogy, one would expect that this
speed was considered finite. The Puranas speak of the moving jyotiscakra,
“the circle of light.” This analogy or that of the swift arrow let loose from
the bow in these accounts leaves ambiguous whether the circle of light is
the Sun or its speeding rays.

We get a specific number that could refer to the speed of light in a
medieval text by Sayana (c. 1315-1387), prime minister in the court of
Emperors Bukka I and his successors of the Vijayanagar Empire and Vedic
scholar. In his commentary on the fourth verse of the hymn 1.50 of the
Rgveda on the Sun, he says'

tatha ca smaryate yojananam sahasre dve dve sate dve ca yojane ekena
nimisardhena kramamana

Thus it is remembered: [O Sun] you who traverse 2,202 yojanas in
half a nimesa.

The same statement occurs in the commentary on the Taittiriya
Brahmana by Bhatta Bhaskara (10th century?), where it is said to be an old
Puranic tradition.

The figure could refer to the actual motion of the Sun but, as we
will see shortly, that is impossible. Is it an old tradition related to the speed
of [sun]light that Sayana appears to suggest? We would like to know if
that supposition is true by examining parallels in the Puranic literature.

The units of yojana and nimesa are well known. The usual meaning
of yojana is about 9 miles as in the Arthasastra where it is defined as
being equal to 8,000 dhanu or “bow,” where each dhanu is taken to be

! Miller, Max (ed.), Rig-Veda-Samhita together with the Ct "y of Siyana.  Oxford
University Press. London, 1890.
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about 6 feet. Aryabhata, B and other used smaller
Yojanas but such exceptional usage was confined to the astronomers; we
will show that the Puranas also use a non-standard measure of yojana. As a
scholar of the Vedas and a non-astronomer, Sayana would be expected to
use the “standard” Arthasastra units.

The measures of time are thus defined in the Puranas:

15 nimesa = 1 kastha

30 kastha = | kala

30 kala = | muhiirta

30 muhiirta = 1 day-and-night

A nimesa is therefore equal to % seconds.

De and Vartak have in recent books® argued that this statement refers
to the speed of light. Converted into modern units, it does come very close
to the correct figure of 186,000 miles per second!

Such an early knowledge of this number doesn’t sound credible
because the speed of light was determined only in 1675 by Roemer who
looked at the difference in the times that light from Io, one of the moons of
Jupiter, takes to reach Earth based on whether it is on the near side of
Jupiter or the far side. Until then light was taken to travel with infinite
velocity. There is no record of any optical experiments that could have
been performed in India before the modern period to measure the speed of
light.

Maybe Sayana’s figure refers to the speed of the Sun in its supposed
orbit around the Earth. But that places the orbit of the Sun at a distance of
over 2,550 million miles. The correct value is only 93 million miles and
until the time of Roemer the distance to the Sun used to be taken to be less
than 4 million miles. This interpretation takes us nowhere. The Indian
astronomical texts place the Sun only about half a million yojanas from the
Earth.

What about the possibility of fraud? Sayana’s statement was printed
in 1890 in the famous edition of Rgveda edited by Max Miiller, the
German Sanskritist. He claimed to have used several three or four hundred
year old manuscripts of Sayana’s commentary, written much before the
time of Roemer.

Is it possible that Miiller was duped by an Indian correspondent
who slipped in the line about the speed? Unlikely, because Sayana’s

? De, S.S.. In Issues in Vedic Astronomy and Astrology, Pandya, H., Dikshit, S., Kansara,
M.N. (eds.). Motilal Banarsidass, Delhi, 1992, pages 234-5;
Vartak, P.V., Scientific Knowledge in the Vedas. Nag Publishers, Delhi, 1995.
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commentary is so well known that an interpolation would have been long
discovered. And soon after Miiller’s “Rigveda” was published, someone
would have claimed that it i this it “secret” ge.
Besides, a copy of Sayana’s commentary, dated 1395, is preserved in the
Central Library, Vadodara.’

One can dismiss Sayana’s number as a meaningless coincidence. But
that would be a mistake if there exists a framework of ideas—an old
physics—in which this number makes sense. We explore the prehistory of
this number by considering early textual references. We will show that
these references in the Puranas and other texts indicate that Sayana’s speed
is connected, numerically, to very ancient ideas. This helps us understand
the framework of ideas regarding the universe that led to this figure.

Physical Ideas in the Indian Literature

The Vedas take the universe to be infinite in size. The universe was
visualized in the image of the cosmic egg, Brahmanda. Beyond our own
universe lie other universes.

The Paficavim$a Brahmana 16.8.6 states that the heavens are 1000
earth diameters away from the Earth. The Sun was taken to be halfway to
the heavens, so this suggests a distance to the Sun to be about 500 earth
diameters from the Earth, which is about 0.4375 million yojanas.

Yajurveda, in the mystic hymn 17, dealing with the nature of the
universe, counts numbers in powers of ten up to 10'%. It has been suggested
that this is an estimate of the size of the universe in yojanas.

The philosophical schools of Samkhya and Vaisesika tell us about the
old ideas on light* According to Samkhya, light is one of the five
fundamental “subtle”™ elements (tanmatra) out of which emerge the gross
elements. The atomicity of these elements is not specifically mentioned
and it appears that they were actually taken to be continuous.

On the other hand, Vaisesika is an atomic theory of the physical world
on the nonatomic ground of ether, space and time. The basic atoms are
those of earth (prhivi, water (apas), fire (tejas), and air (vayu), that should
not be confused with the ordinary meaning of these terms. These atoms are
taken to form binary molecules that combine further to form larger
molecules.’ Motion is defined in terms of the movement of the physical
atoms and it appears that it is taken to be non-instantaneous.

* Shrava. S., History of Vedic Literature. Pranava Prakashan, New Delhi, 1977, p. 185.

* Larson, GJ. and Bhattacharya, RSS. (ed.), Samkhya: A Dualist Tradition in Indian
Philosophy. Princeton University Press, Princeton, 1987; Matilal, B K.. Nvaya-Vaisesika, Otto
Harrassowitz, Wiesbaden, 1977; Potter, K.H. (ed.), Indian Metaphysics and Epistemology,
Princeton University Press, Princeton, 1977.

* Seal, B., The Positive Sciences of the Hindus. Motilal Banarsidass, Delhi, 1985 (1915)
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Light rays are taken to be a stream of high velocity of rejas atoms.
The particles of light can exhibit different characteristics depending on the
speed and the arrangements of the rejas atoms.

Although there existed several traditions of astronomy in India,*
only the i of the Si has been properly
examined. Some of the i ion of the i i
systems is preserved in the Puranas.

The Puranic astronomy is cryptic, and since the Puranas are
encyclopaedic texts, with several layers of writing, presumably by different
authors, there are inconsistencies in the material. Sometimes, speculative
and the empirical ideas are so intertwined that without care the material can
appear meaningless. The Puranic geography is quite fanciful and this finds
parallels in its astronomy as well.

We can begin the process of understanding Puranic astronomy by
considering its main features, such as the size of the solar system and the
motion of the Sun. But before we do so, we will speak briefy of the notions
in the Siddhantas.

Size of the Universe in the Aryabhatiya

Aryabhata in his Aryabhatiya (44) deals with the question of the size
of the universe. He defines a yojana to be 8,000 nr, where a nr is the
height of a man; this makes his yojana (y,) approximately 7.5 miles.” Or y,
= $¥. where y, is the standard Arthasastra yojana. AA 1.6 states that the
orbitof the Sun is 2,887,666.8 yojanas and that of the sky is
12,474,720,576,000 yojanas.

Commenting on this, Bhaskara I (c. 629) says:

a akas. des ZLhah o e
tavan pradesah  kh paridhih  khakak i
hyaparimitatvat akas. parimanakhya i

That much of the sky as the Sun’s rays illumine on all sides is called
the orbit of the sky. Otherwise, the sky is beyond limit; it is impossible
to state its measure.*

“Kak, S.C., 1998. Indian Journal of History of Science, 33, in press.

7 Shukla, K.S. and Sarma, K.V., Aryabhatiya of Aryabhata. Indian National Science
Academy, New Delhi, 1976.

* Shukla, K.S., Aryabhatiya of Aryabhata with the Commentary of Bhaskara I and Somesvara.
Indian National Science Academy, New Delhi, 1976, pp. 26-27.
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This implies that while the universe is infinite, the solar system
extends as far as the rays of the Sun can reach.

There is no mention by Aryabhata of a speed of light. But the range of
light particles is taken to be finite, so it must have been assumed that the
particles in the ‘“observational universe” do not penetrate to the
regions beyond the “orbit of the sky.” This must have been seen in the
analogy of the gravitational pull of the matter just as other particles fall
back on Earth after reaching a certain height.

The orbit of the sky is 4.32 x 10° greater than the orbit of the Sun. It
is clear that this enlargement was inspired by cosmological ideas.

The diameters of the Earth, the Sun, and the Moon are taken to
be 1,050, 4,410 and 315 yojanas, respectively. Furthermore, AA 1.6 implies
the distance to the Sun, R,, to be 459,585 yojanas, and that to the Moon,
R, as 34,377 yojanas. These distances are in the correct proportion related
to their assumed sizes given that the distances are approximately 108 times
the corresponding diameters.*

Converted to the standard Arthasastra units, the diameters of the
Earth and the Sun are about 875 and 3,675 yojanas, and the distance to the
Sun is around 0.383 million yojanas.

Aryabhata considers the orbits, with respect to the Earth, in the
correct order Moon, Mercury, Venus, Sun, Mars, Jupiter, and Saturn, based
on their periods.

Puranic Cosmology

The Puranas provide material which is believed to be closer to the
knowledge of the Vedic times.” Here we specifically consider Vayu
Purana (VaP), Visnu Purana (ViP), and Matsya Purana (MP). VaP and
ViP are generally believed to be amongst the earliest Puranas and at least
1,500 years old. Their astronomy is prior to the Siddhantic astronomy of
Aryabhata and his successors.

The Puranas instruct through myths and this mythmaking can be
seen in their approach to astronomy also. For example, they speak of seven
underground worlds below the orbital plane of the planets and of seven
“continents” encircling the Earth. One has to take care to separate this
imagery, that parallels the conception of the seven centres of the human’s
psychosomatic body, from the underlying cosmology of the Puranas that is
their primary concern in their jyorisa chapters.

* Kak, S.C... The Astronomical Code of the Rgveda.. Aditya, New Delhi, 1994

** Rocher, L., The Purdnas. Otto Harrassowitz, Wiesbaden, 1986;

Wilson, H.H. (tr.), The Vishnu Purana.. Trubner & Co. London, 1865 (Garland Publishing,
New York, 1981);

The Matsya Puranam. The Panini Office, Prayag, 1916 (AMS, New York, 1974);

Tripathi, R.P. (i), The Vayu Purana. Hindi Sahitya Sammelan, Prayag, 1987.
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It should be noted that the idea of seven regions of the universe is
present in the Rgveda 1.22.16-21 where the Sun’s stride is described as
saptadhaman, or taking place in seven regions.

The different Puranas appear to rep: the same
material. There are some minor differences in figures that may be a result
of wrong copying by scribes who did not understand the material. In this
paper, we mainly follow ViP.

VIP 2.8 describes the Sun to be 9,000 yojanas in length and to be
connected by an axle that is 15.7 x 10° yojanas long to the Manasa
mountain and another axle 45,500 yojanas long connected to the pole star.
The distance of 15.7 million yojanas between the Earth and the Sun is much
greater than the distance of 0.38 or 0.4375 million yojanas that we find in
the Siddhantas and other early books. This greater distance is stated
without a corresponding change in the diameter of the Sun. It is interesting
that this distance is less than one and a half times the correct value; the
value of the Siddhantas is one-thirtieth the correct value.

Elsewhere, in VaP 50, it is stated that the Sun covers 3.15 million
Yyojanas in a muhirta. This means that the distance covered in a day are
94.5 million yojanas. MP 124 gives the same figure. This is in agreement
with the view that the Sun is 15.7 million yojanas away from the Earth.
The specific speed given here, translates to 116.67 yojanas per half-nimesa.

The size of the universe is described in two different ways, through
the “island-continents” and through heavenly bodies.

The geography of the Puranas describes a central continent, Jambu,
surrounded by alternating bands of ocean and land. The seven island-
continents of Jambu, Plaksa, Salmala, Kusa, Kraunca, $aka, and Puskara
are encompassed, successively, by seven oceans; and each ocean and
continent is, respectively, of twice the extent of that which precedes it. The
universe is seen as a sphere of size 500 million yojanas.

It is important to realize that the continents are imaginary regions
and they should not be confused with the continents on the Earth. Only
certain part of the innermost planet, Jambu, that deal with India have
parallels with real geography.

The inner continent is taken to be 16,000 yojanas as the base of
the world axis. In opposition to the i ion by earlier
who took the increase in dimension by a factor of two is only across the
seven “continents,” we take it to apply to the “oceans” as well. At the end
of the seven island-continents is a region that is twice the preceding region.
Further on, is the Lokaloka mountain, 10,000 yojanas in breadth, that marks
the end of our universe.
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Assume that the size of the Jambu is J yojana, then the size of
the universe is:

U= J(14242%42°4244254284.2742%42°421%4211421242124214)+10,000 )

Or,
U =32,767J + 10, 000 yojanas 2

If U is 500 million miles, then J should be about 15,260 yojanas.
The round figure of 16,000 is mentioned as the width of the base of the
Meru, the world axis, at the surface of the Earth. This appears to support
our interpretation.

Note that the whole description of the Puranic cosmology had

been thought to be i i because an of the
increase in the sizes of the “continents” had been used.

When i d in juxtaposition with the ing numbers, the

of i i is a of the plane of the

Earth’s rotation, with each new continent as the orbit of the next “planet™."

The planetary model in the Puranas is different from that in the
Siddhantas. Here the Moon as well as the planets are in orbits higher than
the Sun. Originally, this supposition for the Moon may have represented
the fact that it goes higher than the Sun in its orbit. Given that the Moon’s
inclination is 5° to the ecliptic, its declination can be 28.5° compared to the
Sun’s maximum declination of £23.5°. This “higher” position must have
been, at some stage, represented literally by a higher orbit. To make sense
with the observational reality, it became necessary for the Moon is taken to
be twice as large as the Sun.

" de Santillana, G. and von Dechend, H., Hamlet's Mill: An Essay on Myth and the Frame of
Time. Gambit, Boston. 1969.
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The distances of the planetary orbits beyond the Sun are as follows:

Table 1: From Earth to Pole-star

Interval I Yojanas
Earth to Sun 15,700,000
Sun to Moon 100,000
Moon to Asterisms 100,000
Asterisms to Mercury 200,000
Mercury to Venus 200,000
Venus to Mars 200,000
Mars-to Jupiter 200,000
Jupiter to Saturn 200,000
Saturn to Ursa Major 100,000
Ursa Major to Pole-star 100,000
Sub-total 17,100,000

Further spheres are postulated beyond the pole-star. These are the
Maharloka, the Janaloka, the Tapoloka, and the Satyaloka. Their distances
are as follows:

Table 2: From Pole-star to Satyaloka

Interval IT Yojanas
Pole-star to Maharloka 10,000,000
Maharloka to Janaloka 20,000,000
Janaloka to Tapoloka 40,000,000
Tapoloka to Satyaloka 120,000,000
[ Grand Total 207,100,000

Since the last figure is the distance from the Earth, the total diameter of
the universe is 414.2 million yojanas, not including the dimensions of
the various heavenly bodies and lokas. The inclusion of these may be
expected to bring this calculation in line with the figure of 500 million
Yojanas mentioned earlier.

Beyond the universe lies the limitless Pradhdana, that has within it
countless other universes.

Puranic cosmology views the universe as going through cycles of
creation and destruction of 8.64 billion years. The consideration of a
universe of enormous size must have been inspired by a supposition of
enormous age.
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Reconciling Puranic and Standard Yojanas

It is clear that the Puranic yojana (y,) are different from the
Arthasastra yojana (y,). To find the conversion factor, we equate the
distances to the Sun.

0.4375x 10°y,=15.7x 10°y, 3)
In other words,
1y,=36y, )

The diameter of the Earth should now be about 875 x 36 = 31, 500 y,.
Pcrhaps, this was taken to be 32,000 y, twice the size of Meru. This
is by the in the Puranas. For example,
MP 126 says that the size of Bharatavarsa (India) is 9,000 y,, which is
roughly correct.
We conclude that the kernel of the Purnic system is consistent with
the Siddhantas. The misunderstanding of it arose because attention was not
paid to their different units of distance.

Speed of the Sun

Now that we have a Puranic context, Sayana’s statement on the speed
of 2,202 yojanas per half-nimesa can be examined.

We cannot be absolutely certain what yojanas did he have in mind:
standard, or Puranic. But either way it is clear from the summary of
Puranic cosmology that this speed could not be the speed of the Sun. At the
distance of 15.7 million yojanas, Sun’s speed is only 121.78 yojanas (y,)
per half-nimesa.  Or if we use the the figure from VaP, it is 116.67.
Converted into the standard yojanas, this number is only 3.24 y, per half-
nimesa.

Sayana’s speed is about 18 times greater than the supposed speed of
the Sun in y, and 2 x 18 greater than the speed in y, So either way, a
larger number with a definite relationship to the actual speed of the Sun was
chosen for the speed of light.

The Puranic size of the universe is 13 to 16 times greater than the
orbit of the Sun, not counting the actual sizes of the various heavenly
bodies. Perhaps, the size was taken to be 18 times greater than the Sun’s
orbit. It seems reasonable to assume, then, that if the radius of the universe
was taken to be about 282 million yojanas, a speed was postulated for light
so that it could circle the farthest path in the universe within one day. This
was the physical principle at the basis of the Puranic cosmology.
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Concluding Remarks

We have seen that the astronomical numbers in the Puranas are much
more consistent amongst themselves, and with the generally accepted sizes
of the solar orbit, than has been hitherto assumed. The Puranic geography
must not be taken literally.

‘We have also shown that the Sayana’s figure of 2,202 yojanas per half-
nimesa is consistent with Puranic cosmology where the size of “our
universe” is a function of the speed of light. This size represents the space
that can be spanned by light in one day.

It is quite certain that the figure for speed was obtained either by
this argument or it was obtained by taking the postulated speed of the Sun
in the Puranas and multiplying that by 18, or by multiplying the speed in
standard yojanas by 2 x 18%. We do know that 18 is a sacred number in the
Puranas, and the fact that multiplication with this special number gave a
figure that was in accord with the spanning of light in the universe in one
day must have given it a special significance.

Is it possible that the number 2,202 arose because of a mistake of
multiplication by 18 rather than a corresponding division (by 36) to reduce
the Sunspeed to standard yojanas? The answer to that must be “no”
because such a mlslake ls oo egreglous Furthermore, Sayana’s own
brother Madh was and the incorrectness of
this figure for the accepled speed of the Sun would have been obvious to
him.

If Sayana's figure was derived from a postulated size of the
universe, how was that huge size, so central to all Indian thought, arrived
at? A possible explanation is that the physical size of the universe was
taken to parallel the estimates of its age. These age-estimates were made
larger and larger to postulate a time when the periods of all the heavenly
bodies were synchronized."

The great numbers of the Purnas suggest that the concepts of

ha and kalpa, i credit to the of the
period, must have had an old pedigree. This is in consonance with the new
ing that ids was in place in the second and

the third millennia BC."”

We have provided a context in which Sdyana’s speed can be
understood. In this understanding, the speed of light was taken to be 2 x
182 greater than the speed of the Sun in standard yojanas so that light can
travel the entire postulated size of the universe in one day. It is a lucky
chance that the final number turned out to be exactly equal to the true

" Kak, S.C., Vistas in Astronomy, 36, 117-140, 1993.
" Kak, S.C.. Quarterly Journal of the Royal Astronomical Society, 36, 385-396, 1995; Kak,
S.C., Quarterly Journal of the Royal Astronomical Society, 37,709-715, 199.
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speed. Sayana’s value as speed of light must be considered the most
astonishing “blind hit” in the history of science!

On The Science Of Consciousness In
Ancient India

Subhash Kak
Department of Electrical & Computer Engineering
Louisiana State University
Baton Rouge, Louisiana

Introduction

Consciousness is described as the ultimate mystery in ancient Indian
texts and its study is lauded as the highest science. But until recently, the
question of consciousness was considered to lie outside of the scope of
scxence‘ and, consequently, the rcferences in the Indian texts to

have not been d for their signifi to the history
of science in India. But before a chronology of the ideas related to
consciousness can be developed it is essential to understand their scientific
significance and separate what can be correlated with the emerging insights
of cognitive science from the more speculative philosophical and religious
thought.

Scientific attitudes towards consciousness have changed due to the
recent advances in neurophysiology and because modern physics and
computer science are confronted with the question of the nature of the
observer. In many ways, the study of consciousness is centre-stage in the

*Reprinted with permission from the author and the Indian National Science Academy.

! Crick, F. and Koch, F., The problem of consciousness. Scientific American, 267(9), 153-159,
1992,

Kak, S., Reflections in clouded mirrors: selfhood in animals and machines. Symposium on
Aliens, Apes, and Ariificial Intelligence. Southemn Humanities Council Annual Conference,
Huntsville, AL, February 1993;

Goswami, A., The Self-Aware Universe. New York: G. P. Putnam’s Sons, 1993;

Horgan, J., Can science explain consciousness? Scientific American 269(7), 88-94, 1994,
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discussions of modern science.’ On the other hand, a considerable part of
Indian thought is devoted to the question of consciousness. Although a part
of this tradition deals with philosophical issues, there are other aspects, as
in yoga and tantra, that deal with structural aspects. Books such as
Yog and Tripi hasya claim to describe the nature of
consciousness. The same is generally true of various works on yoga, the
upanisads, and even the earlier Vedic texts. The task for the historian
of science is to sketch an evolution of the ideas related to consciousness and
see how this sketch fits with the development of other scientific ideas.
Since Indmn works related to consciousness have not yet been
i it is perhaps to write such a history.
Note that there are intriguing parallels between the insights of the
early Vedic theory of consciousness and those of quantum mechanics and
neuroscience. In the Vedic theory, which dates back’ to at least 2000 BC,
one views awareness in terms of lhe reflecuon that the hardware of the
brain provides to an ying ill or principle called
the self. This approach allows one to separate questions of the tools of
awareness, such as vision, hearing and the mind, from the person who
obtains this awareness. The person is the conscious self, who is taken to be
a reservoir of infinite potential. But the actual capabilities of the animal are
determined by the neural hardware of its brain. This hardware may be
compared to a mirror. The hardware of the human brain represents
the clearest structure to focus the self, which is why humans are able to
perform in ways that other animals cannot. Within the framework of this
theory humans and other animals are persons and their apparent behavioral
arise from the i d of the neural hardware of
the lower animals. Self- is an which is
grounded on the self and the associations stored in the brain.

* Edelman, G., The Remembered Present: A Biological Theory of Consciousness. New York:
Basic Books, 1989;
Penrose, R.. Shadows of the Mind. Oxford: Oxford University Press, 1994:
Scott. A. C. . Stairway to the Mind: The C New Science of C: New
York: Springer-Verlag, 1995
Kak, S., Quantum neural computing. Advances in Imaging and Electron Physics 94, 250-313,
1995;
Kak, S., The three languages of the brain: quantum reorganizational, and associative.
Appalachian Conf, On Behavioral Neurodynamics. Radford, VA, Sept. 1995
Kak, S., Information physics, and computation. Foundations of Physics 26, 127-137, 1996
. S.. Why machines cannot be conscious. Presented at Towards a Science of
consciousness 1996, Tucson, April 1996
Hameroff, S. and Penrose, R. , Conscious events as orchestrated spacetime selections. Journal
of Consciousness Studies 3, 36-53. 19%.

*Kak, S.C., The Astronomical Code of the Rgveda. New Delhi: Aditya, 1994
Feuerstein. G., Kak, S.. Frawley, D... In Search of the Crade of Civilization. Wheaton: Quest
Books, 1995.

COMPUTING SCIENCE IN ANCIENT INDIA 93

From a modern scientific viewpoint, living systems are dynamic
structures, that are defined in terms of their interaction with their
environment. Their behavior is taken to reflect their past history in terms
of instincts. Living systems can also be defined recursively in terms of
living sub-systems. Thus, for ants, one may consider their society, an ant
colony, as a living superorganism; in turn, the ant’s sub-systems are also
living. Such a recursive definition appears basic to all life. Machines, on
the other hand, are based on networking of elements so as to instrument a
well-defined computing procedure and they lack a recursive self definition.

The reality of consciousness is evident not only from the fact that
responses are dnffemnt m sleepwalking and awake states but from the

with split-brain patients.* The experiments of
Kornhuber® indicate that it takes about eight-tenths of a second for the
readiness potential to build up in the brain before voluntary action begins.
According to Libet* the mind extrapolates back in time by about half a
second or so the occurrence of certain events. So consciousness is not an
epiphenomenon.  As it possesses a unity, it should be described by a
quantum mechanical wavefunction.

Eugene Wigner’ argued that the laws of quantum mechanics may not
apply to conscmus agems In a variant of the setting of the Schrodinger cat

he d two i agents, one inside the box and
another outside. If the inside agent makes an observation that leads to the
collapse of the wavefunction, then how is the linear superposition of the
states for the outside observer to be viewed? Wigner argued that in such a
case, with a conscious observer as part of the system, linear superposition
must not apply. This result, now called the Wigner's friend paradox, and
others have led many quantum theorists to argue that basic advances in
physics would eventually require one to include consciousnessin the
scientific framework.

The Vedic system, which was an earlier attempt to unify knowledge,
was confronted by similar paradoxes. It is well known that Schrédinger’s

of quantum ics was inspired, in part, by Vedanta,* the
full-blossomed Vedic system. His debt to the Vedic views is expressed in
an essay he wrote in 1925 before he created his quantum theory:

* Trevarthen, C. (Ed.), Brain Circuits and Functions of the Mind: Essays in Honor of Roger
W. Sperry. Cambridge: Cambridge University Press, |
* Komhuber, H.H. , Cerebral cortex, cerebellum, and basal ganglia: An introduction to their
motor function. In W. Schmitt (ed.), The Neurosciences: Third Study Program. Cambridge:
MIT Press, 1974.
¢ Libet, B., Electrical stimulation of cortex in human subjects, and conscious sensory aspects.
In A. Iggo (ed.). Handbook of sensory physiology: Vol. II. Somatosensory System. New York:
Springer-Verlag. 1973

7 Wigner, E., Symmetries and Reflections. Bloomington: Indiana University Press, 1967.
* Schrodinger, E., Meine Weliansicht. Wien: Paul Zsolnay, 1961.
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This life of yours which you are living is not merely a piece of this
entire existence, but is in a certain sense the “whole”; only this whole is
not so constituted that it can be surveyed in one single glance. This, as
we know, is what the Brahmins express in that sacred, mystic formula
which is yet really so simple and so clear: tar tvam asi, this is you.
Or, again, in such words as “I am in the east and the west. 1 am above
and below, I am this entire world.

Schrodinger used Vedic ideas also in his immensely influential book,

What is Life? . that played a significant role in the development of modern
bmlogy According to his bxographer Walter Moore, there is a clear

between 0 ding of Vedanta and his

research:

The unity and continuity of Vedanta are reflected in the unity
and continuity of wave mechanics. In 1925, the world view of phys:cs
was a model of a great machine of
material particles. During the next few years, Schrodinger and
Heisenberg and their followers created 2 universe based on
superimposed i waves of i i This new
view would be entirely consistent with the Vedantic concept of All in
One."

In view of this connection between the Vedic system and quantum

mechanics and the fact that quantum ical models of
are bemg anempled it is important to see how the Vedic philosophers

ped their ion models of A summary of one

classification model is the main focus of the paper. The question of the
history of ideas related to the notion of consciousness in ancient India will
also be touched upon briefly in this paper.

Psychology, Complementarity

Self, Biology, Psychology

Neural network models have been used by cognitive scientists to

model behaviour. The limitations of neural models have been highlighted

* Moore, W., Schrodinger, Life And Thought. Cambridge University Press, 1989, pp. 170-3.
" Schrodinger, E.. What Is Life? New York: Macmillan, 1965.
" Moore op. cit. pp. 173

COMPUTING SCIENCE IN ANCIENT INDIA 95

by Sacks' and others who point out that these models do not take into
account the notion of self.

The limitations of current theories of psychology were well
summarized by the distingui Canadian psychol Melzack."”

The field of psychology is in a state of cnsxs We are no
closer now to the most fund I of
psychology than we were when psychology became a science a
hundred years ago. Each of us is aware of being a unique “self”,
different from other people and the world around us. But the nature of
the “self”, which is central to all psychology, has no physiological
basis in any contemporary theory and continues to elude us. The
concept of “mind” is as perplexing as ever....There is a profusion of
little theories—theories of vision, pain, behaviour-modification, and so
forth—but no broad unifying concepts... Cognitive psychology has
recently been proclaimed as the revolutionary concept which will lead
us away from the sterility of behaviourism. The freedom to talk about
major psychol | topics such as and p illusions
does, indeed, represent a great advance over behaviourism. But on
closer examination, cognitive psychology turns out to be little more
than the psychology of William James published in 1890; some

logy have been stirred in with the
old psychologlcal mgredlcms, but there have been no important
conceptual advances.... We are adrift, withoutthe anchor of
neuropsychological lheory, in a sea of facts—and practically drowning
in them. We desperately need new concepts, new approaches.

Cognitive abilities arise from a continuing reflection on the perceived
world and this question of reflection is central to the brain-mind problem,
the measurement problem of physics, and the problem of determinism and
free-will. A dualist hypothesis'® to explain brain-mind interaction or the
process of reflection meets with the criticism that this violates the
conservation laws of phys)cs On the other hand a brain-mind identity

with a or ion of the brain
processes, does not explain how self-awareness could arise. At the level of

"2 Sacks, 0., Awakenings, A Leg To Stand On, The Man Who Mistook His Wife For A Hat.
New York: Book of the Month Club, 1990
' Melzack, R., Phantom limbs, the self and the brain. Canadian Psychology, 30, 1-16, 1989,

p. 1-2.
WPiak. s.C.. The Nature of Physical Realiry. New York: Peter Lang. 1986.

Penrose, R., The Emperor's New Mind: Concerning Computers, Minds, and the Laws of
Physics. Oxford University Press, 1989.

* Eccles, J.C.. Do mental events cause neural events analogously to the probability fields of
quantum mechanics? Proc. Sociery London, B 227, 411-428, 1986.
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ordinary perception there exists a duality and complementarity between an
autonomous (and reflexive) brain and a mind with intentionality.

Complementarity
The notion of self seems to hinge on an indivisibility akin to that found
in quantum hanics. The particle duality d in quantum
phenomenaled Neils Bohr in 1927 to introduce the notion of
ity. Compl ity is the principle that description of
reality in any of the mutually ictory pictures is i but
between them such pictures form a complete, complementary description.
This principle also presupposes that experiments can be unambiguously
described only in classical terms. Considering the question of logical
foundations of biology Bohr concluded that life (and also
cognitive) processes are likewise subject to complementarity.  The
complementarity exhibited by life may be expressed most fundamentally
between structure and behaviour.

The ition of the limitation of ical concepts in
atomic physics would rather seem suited to conciliate the apparently
i iewpoints of i and psychology. Indeed, the
necessity of considering the interaction between the measuring
instruments and the object under i igation in atomic i
exhibits a close analogy to the peculiar difficulties in psychological
analysis arising from the fact that the mental content is invariably
altered when the attention is concentrated on any special feature of it."

Bohr suggested an interesting analogy between neural (thought) and
quantum processes. The instantaneous state of a thought may be compared
with the position of a particle, whereas the direction of change of that
thought may be compared with the particle’s momentum. This is described
by Bohm as follows:"”

Part of the significance of each element of a thought
process appears to originate in its indivisible and incompletely

with other el . Similarly, some of the
characteristic properties of a quantum system (for instance, wave or
particle nature) depend on i isible and i

pletely
quantum  connections with surrounding objects.  Thus, thought
processes and quantum systems are analogous in that they can not be
analyzed too much in terms of distinct elements, because the intrinsic

' Bohr, N., Atomic Physics and Human Knowledge. New York: Science Editions, 1961.
" Bohm, D., Quantum Theory. New York: Prentice-Hall, 1951.

COMPUTING SCIENCE IN ANCIENT INDIA 97

nature of each element is not a property existing separately from and
mde_pendenlly of other elements but is, instead, a property that arises
partially from its relation with other elements.

There is also a similarity between the thought process and the
classical limit of the quantum theory. The logical process corresponds to
the most general type of thought process as the classical limit corresponds
to the most general quantum process. In the logical process, we deal with

lassi i ese i i are i as being pletely
separate but related by the rules of logic, which may be regarded as the
analogue of the causal laws of classical physics. In any thought process, the
component ideas are not separate but flow steadily and indivisibly. An
attempt to analyze them into separate parts destroys or changes their
meanings. Yet there are certain types of concepts, among which are those
involving the classification of objects, in which we can, without producing
any essential changes, neglect the indivisible and i
connection with other ideas.

Complementarity is required at different levels of description. But just

as one might use a p ion instead of ity
for atomic descriptions, a probabilistic description may also be used for
cognitive behaviour. However, such a p ilisti iour is i

to describe the behaviour of individual agents, just as notions of probability
break down for individual objects.

As an epi ical principle ity has been criticized
for not providing a unifying picture. But from an operational point of view
complementarity, by considering all kinds of responses, becomes a very
useful approach. ~When analyzed in terms of local interactions the
framework of quantum mechanics suffers from other paradoxical
characteristics. This shows up in non-local correlations that appear in the
manner of action at a distance."

The Vedic System of Knowledge

The Vedic system of knowledge appears already to be in place by the
time of the Rgveda, conservatively dated to the late third or early second
millennia BC.* The Rgveda and the other Vedic books do not present a
logical resolution of the paradox of consciousness but assert that knowledge
is of two types: it is superficially dual but at a deeper level it has a unity.
The Vedic theory implies a complementarity by insisting that the material
and the conscious are aspects of the same transcendent reality. The modern

" Bell, J.S., Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge
University Press. 1987
" Feuerstein et al, op cit
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scientific tradition is like the Vedic tradition since it acknowledges
contradictory or dual descriptions but seeks unifying explanations.

The Vedic approach to knowledge was based on the assumption that
there exist equivalences of diverse kinds between the outer and the inner
worlds. This prompted a deep examination of the human mind. In the
description of physical reality the Vedic scholars noted several paradoxes.”
If matter is divisible, each atom must be point-like because otherwise it
would be further divisible. But how do point-like atoms lead to gross
matter with size? Space is neither continuous nor discontinuous, for if it
were continuous its points would be non-enumerable, but if it is
discontinuous then how do objects move across the discontinuity? A
popular way to express these difficulties was to talk about the riddle of
being and becoming. The basic question here is how does an entity change
its form and become another?

The philosophical systems that arose in India early on were meant to
help one to find clues to the nature of consciousness. It was recognized that
acomplementarity existed between different approaches to reality,
P ing ictory i That is why philosophies of logic
(nyaya) and physics ( gy and self (sankh and
psychology (yoga), and language (mimamsa and reality (vedanta) were
grouped together in pairs. The system of Sankhva considered a
representation of matter and mind in different enumerative categories. The
actual analysis of the physical world was continued outside of the cognitive
tradition of Sankhya in the sister system of Vaisesika, that deals with further
characteristics of the gross elements. The atomic doctrine of Vaisesika can
be seen to be an extension of the method of counting in terms of
categories and relationships. The reality in itself was taken to be complex,
continuous and beyond logical explanation. However, its representation in
terms of the gross elements like space, mass (earth), energy (fire) and so on
that are cognitively apprehendable, can be analyzed in discrete categories
leading to atomicity. The cosmology of Sankhya is really a reflection of the
devel of the mind, in cognitive categories.

The Greek philosophers also spoke of paradoxes inherent in
descriptions. For example, we have Zeno's famed paradoxes on motion.
But the Greek tradition does not appear to have dealt with the problem of
consciousness.

The Vedic Model of the Mind

One Vedic model of the mind is expressed by the famous metaphor of
the chariot in Katha Upanisad and Bhagavad Gita. A person is compared
to a chariot that is pulled in different directions by the horses yoked to it;

* Kak, S.C., The Nature of Physical Reality, op. cit.
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the horses represent the senses. The kind is the driver who holds the reins
to these horses; but next to the mind sits the true observer, the self, who
represents a universal unity. Without this self no coherent behaviour is
possible.

The Five Levels

In the Taittiriya Upanisad an individual is represented in terms of
five different sheaths or levels that enclose the individual’s self. These
levels, shown in an ascending order, are:

« The physical body (annamaya kosa)
« Energy sheath (pranamaya kosa)

« Emotion sheath (aGnandamaya kosa)

Here 1 have translated nanda as emotion rather than the customary
bliss, since emotion is the closest cognitive category to the Sanskrit term.
These sheaths are defined at increasingly finer levels. At the highest Ieve.l,
above the emotion sheath, is the self. It is significant that emotion is
placed higher than the intellect. This is a recognition of !he_ fact lha)

y meaning is icated by iati which are
by the emotional state. )

The energy that underlies physical and mental processes is called
prana. One may look at an individual in three different Ie}vcls, At the
lowest level is the physical body, at the next higher level is the» energy
systems at work, and at the next higher level are the thoughts. Smge the
three levels are interrelated, the energy situation may be changed by inputs
either at the physical level or at the mental level. When the energy state is
agitated and restless, it is characterized by rajas, when‘ it is dull and
lethargic, it is characterized by tamas. The state of equilibrium and balance
is termed satrva. 4

Prana, or energy, is described as the currency, or the medium of

h of the p physi system. The levels 3, 4, and 5 are
often lumped together and called the mind. oot

The key notion is that each higher level represents characlengtucs_ that
are emergent on the ground of the previous level. In this theory mind is an
emergent entity, but this emergence requires the presence of the self.

The Structure of the Mind

Now we consider the structural characteristics of the mind as given by
the Sankhya system. The mind is viewed as consisting of five components:
manas, ahamkara, citta, buddhi and atman.
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Manas is the lower mind which collects sense impressions. Its
perceptions shift from moment to moment. This sensory-motor mind
obtains its inputs from the senses of hearing, touch, sight, taste, and smell.
Each of these senses may be taken to be governed by a separate agent.

Ahamkara is the sense of I-ness that associates some perceptions to
a subjective and personal experience.

Once sensory impressions have been related to I-ness by ahamkara,
their evaluation and resulting decisions are arrived at by buddhi, the
intellect. Manas, ahamkara, and buddhi are collectively called the internal
instruments of the mind.

Next we come o citta, which |s the memory bank of the mind.
These the on which the rest of the mind
operates. But cirta is not merely a passive instrument. The organization of
the new impressions throws up instinctual or primitive urges that creates
different emotional states.

This mental complex surrounds the innermost aspect of consciousness
which is called arman. It is also called the self, brahman, or jiva. Atman is
considered to be beyond a finite enumeration of categories.

Hierarchical Levels Within the Brain

Since the state of mind is mediated by the pranic energy, it becomes
useful to determine how this is related to the focus on the various parts of
the body. In the rantras seven, eight, or nine points of primary focus which
are called cakras are described. It has been argued by some that the
beginnings of this system go right back to the Vedic times as in
Arharvavzda (10 2.31. 2) Whlch descnbcs the body as being eight-wheeled
and d ( devanam puryodhya).  Their
positions appear to be areas in the brain which map to different points on
the spinal cord. The lowest one is located at the bottom of the vertebral
column (maladhara cakra). The next cakra is a few inches higher at the

ive organs (svadhisthana cakra). The third cakra (manipara

cakra) is at the solar plexus. The heart region is the anahata cakra. The
throat has the fifth cakra called the visuddhi cakra. Between the eyebrows
is the gjfia cakra. At the top of the head is the sahasrara cakra®

It may be assumed that the stimulation of these cakras in a proper
way leads to the development of certain neural structures that allow the I-
ness to experience the self. In other words, the cakras are points of basic
focus inside the brain that lead to the explication of the cognitive process.

* Feuerstein, G., Yoga. Los Angeles: Jeremy P. Tarcher, 1989.
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Further Universal Categories

If the categories of the mind are taken to arise from pattern recognition
of shadow mental images, then how are these categories associated with a
single “agent”, and how does the mind bootstrap these shadow categories to
find the nature of reality?

These questions were considered by later scholars who further
developed the earlier Vedic ideas. This development occurred within the
frameworks of Vaisnavism as well as Saivism. Here we speak of only one
specific development that took place in Kashmir and has come to be known
as Kashmir Saivism.* The beginning of this specific tradition is seen in the
Siva Sitras of Vasugupta (c. 800 AD). The Siva Sitras have aphorisms
such as:

cmmnyamatma (Consciousness is the self); vidyzimmuuhane
avike khecari $i a ge of one’s innate nature
leads to Siva’s state: it is like wandering in the sky of consciousness).

Siva is the name for the absolute or transcendental consciousness.
Ordmaxy conscmusness is bound by cognitive categories related to
ing the true springwells of ordinary
consciousness one comes to recognise its universal (Siva). This brings the
further recognition that one is not a slave (pasu) of creation but its master
(pati).

According to Sankhya, reality may be represented in terms of twenty-
five categories. These categories form the substratum of the classification
in Saivism. These categories are:

(i) five elements of materiality, represented by earth, water, fire, air
ether;

(i) five subtle elements, represented by smell, taste, form,
touch, sound;

(iii) five organs of action, by
locomotion, grasping, speech;

(iv) five organs of cognition, related to smell, taste, vision, touch,
hearing;

(v) three internal organs, being mind, ego, and intellect; and
inherent nature (prakrti), and consciousness (purusa).

* Abhinavagupta. R., A Trident of Wisdom. Albany: State University of New York Press,
1989;

Singh, Jaideva, Siva Satras. Delhi: Motilal Banarsidass, 1979;

Dyczkowski. M.S.G., The Doctrine of Vibration. Albany: SUNY Press, 1987
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These categories define the structure of the physical world and of
agents and their minds. But this classification is not rich enough to describe
the p of i asitis i as a single category.

Saivism further istics of i

(i) sheaths or hmllznuns of consciousness, being ume (kala), space

(niyati), y (raga), (vidya), y (kala), self
forgemng (maya), and
(ii) ﬁve of lhg i i which are ion in

PSP ey of
!he universal (Evam), Lhe principle of being (sadakhya), ti
principle of negation and potentialization (Sakti), and pure
awareness by itself (Siva).

The first twenty-five categories relate to an everyday classification
of reality where the initial five characteristics relate to the physical
inanimate world, and the next eighteen define the characteristics of the
conscious organism. The inherent nature of the individual is called prakrti
while purusa represents self.

The next eleven categories characterize different aspects of
consciousness which is to be understood in a sense different to that of
mental capacities (categories 21, 22, 23). One of these mental capacities is
akin to artificial intelligence of current computer science; which is geared to
finding patterns and deciding between hypotheses. On the other hand
categories 26 through 36 deal with interrelationships in space and time
between these patterns and deeper levels of compreh:nsmn and awareness.

Any focus of must first be ci ibed by di
of time and space. Next, it is essential to select a process (out of the
many defined) for attention (category 28). The aspect of consciousness that
makes one have a feeling of inclusiveness with this process, followed later
by a sense of alienation is called maya (category 31). Thus maya permits
one, by aprocess of identification and detachment, to obtain limited
knowledge (category 29) and to be creative (category 30).

Universal Experience

How does consciousness ebb and flow between an identity of self and
an identity with the processes of the universe? According to Saivism, a
higher category (number 32) permits comprehension of oneness and
separation with equal clarity. On the other hand category 33 allows a
visualization of the ideal universe. Category 33 allows one to move beyond
mere comprehension into a will to act. The final two categories deal with
the potential energy that leads to continuing transformation (35) and pure
consciousness by itself (36). Pure awareness is not to be understood as
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similar to everyday awareness of humans but rather as the underlying
scheme that the laws of nature express. The laws themselves define the
Sakti tatva.

The cognitive categories of Saivism are of relevance in computer
science. At present only a subset of these categories can be dealt with by
the most versaule computing machmes Currem research is focused on the
lower such as g with action ities (as in
robotics) and powers of sense perception (as in vision). At the higher
levels, machines can be endowed with some capacity for judgement that
typically involves computation of suitably framed cost functions, or finding
patterns, of choosmg betwecn hypotheses, but the capacities of

i and espe ly seem to be , out of
the realm of present day computing science.

A Theory of Speech and Cognition

Rgveda (1.164.45) describes that speech and its concomitant cognition
is of four kinds. The names of these kinds of speech are described by
Bhartrhari (c 450 AD) in his Vakyapadiya to be vaikhari, madhyama,
pasyanti, and para* Vaikhart gross sound; dh a is the
level of mental images; pasyanti rep that gestalt or undif
whole that sounds emerge from in the process of speaking and into which
they merge in the process of hearing; para is the unmanifest sound that
resides in one’s self or universal consciousness.

Bhartrhari argues that reality (sampratisatta) when seen through the
window of language reduces to a formal reality (aupacariki satta).
Language can only deal upto the level of pasyanti, the gestalts underlying
mental constructs, and it remains limited because pard speech lies beyond
it.

Bhartrhari calls the word or sentence considered an indivisible
meaning unit as the sphota. He bases this concept on the Vedic theory that
speech (vak) is a manifestation of the primordial reality. The word-sphota
is thus contrasted from word-sound. Meaning is obtained at a deep level
based on the sequence of sounds.

The discovery of a very large number of phonetic symmetries in the
first hymn of the Rgveda that cannot be conceived to have been deliberately
introduced gives support to the thesis that language captures only some of
the symmetries that nature’s intelligence can express. Raster summarizes
this discovery thus:*

* Abhyankar, K.V. and Limaye, V.P., Vakyapadiva of Bhartrhari. Poona: University of
Poona, 1965.

Coward, H.G., Bhartrhari. Boston: Twayne Publishers. 1976

* Raster, P., Phonetic Symmetries in the First Hymn of the Rigveda Innsbruck, 1992 p. 38.
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In our search for phonetic symmetries in the first sikia of
the Rgveda, we i the ies of more than
50 sound classes. Of these more than 40 sound classes were found
with occurrence frequencies which are integral multiples of 8 and
more than 20 sound classes with occurrence frequencies which are
even integral mnlliples of 24.. Moreover, in many cases, the

of ically related sound classes form
simple mtegml ratios, for example, the ratio of 2:1 between the
frequencies of voiced and voiceless consonants and the ratio of 1:2
between the frequencies of long and short vowels. Thus, fundamental
oppositions of the phonological system are reflected in the quantitative
distribution of sounds in the text... The order which has been found
underlying the phonological structure of the text is a hidden order. It
cannot be perceived consciously while reading or listening to the text....
Although the order found in the distribution of the sounds in the text is
unfolded sequentially in time, it is m itself not a linear, but a global

(and) it is multidi

Bhartrhari's theory speaks of a reality richer than the expressive power
of language. Like the observables of Qquantum theory, language picks
only p i with its

The Vedic theory of consciousness speaks of a process of evolution. In
this evolution the higher animals have a greater capacity to grasp the nature
of the universe. The urge to evolve into mghcr forms is taken to be inherent
in nature. A system of an ion from i 1o progi y higher
life is clearly spelt out in the system of Sankhya. At the mythological level
this is represented by an ascent of Visnu through the forms of fish, tortoise,
boar, man-lion, the dwarf into man.

Concluding Remarks

The classificatory system developed in the Indian tradition does not
address the paradoxes of consciousness. Rather, categories are defined,
such as that of universal experience, that can be seen to explain the
“complementary” nature of human experience. These categories clearly
assign central role to selectivity, or context, and change. The Vedic system
takes the mind to be emergent on the ground of the neural hardware of the
brain, but this emergence is contingent on the principle of the self. In the
earliest literature, the gods represent various cognitive centres. Tantric
texts use esoteric diagrams or yantras for their representation.* These are
other systems which are based on basic sounds of the alphabet related to

* Woodroffe, J., The Serpent Power. Madras: Ganesh and Co., 1981 Feuerstein, op cit.
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fundamental aspects of the mind.* Such ideas have been, by tradition,
consigned to philosophy or yoga and rantra. But it is possible, indeed
likely, that there is much more than speculative thought in these models.

The tradition of consciousness study in India, long limited to
philosophical studies, remains an unexplored frontier in the history of
science. This paper is just an mtmducucn to the problem. Further
advances in a of will lead to a better
appreciation of the Indian literature onthe subject. One hopes that a
comprehensive chmnology of the various developments in the structural
models of will be duced.

Pararrisika-Vi Delhi: Motilal 1988
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